scholarly journals Updraft and Downdraft Core Size and Intensity as Revealed by Radar Wind Profilers: MCS Observations and Idealized Model Comparisons

2020 ◽  
Vol 125 (11) ◽  
Author(s):  
Dié Wang ◽  
Scott E. Giangrande ◽  
Zhe Feng ◽  
Joseph C. Hardin ◽  
Andreas F. Prein
Methodology ◽  
2005 ◽  
Vol 1 (1) ◽  
pp. 2-17 ◽  
Author(s):  
Thorsten Meiser

Abstract. Several models have been proposed for the measurement of cognitive processes in source monitoring. They are specified within the statistical framework of multinomial processing tree models and differ in their assumptions on the storage and retrieval of multidimensional source information. In the present article, a hierarchical relationship is demonstrated between multinomial models for crossed source information ( Meiser & Bröder, 2002 ), for partial source memory ( Dodson, Holland, & Shimamura, 1998 ) and for several sources ( Batchelder, Hu, & Riefer, 1994 ). The hierarchical relationship allows model comparisons and facilitates the specification of identifiability conditions. Conditions for global identifiability are discussed, and model comparisons are illustrated by reanalyses and by a new experiment on the storage and retrieval of multidimensional source information.


1976 ◽  
Vol 4 (3) ◽  
pp. 181-189 ◽  
Author(s):  
S. K. Clark

Abstract An idealized model is proposed for heating of a pneumatic tire. A solution is obtained for the temperature rise of such a model. Using known thermal properties of rubber and known heat transfer coefficients, the time to reach thermal equilibrium is estimated.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 420
Author(s):  
Ang Deng ◽  
Wonkeun Chang

We numerically investigate the effect of scaling two key structural parameters in antiresonant hollow-core fibers—dielectric wall thickness of the cladding elements and core size—in view of low-loss mid-infrared beam delivery. We demonstrate that there exists an additional resonance-like loss peak in the long-wavelength limit of the first transmission band in antiresonant hollow-core fibers. We also find that the confinement loss in tubular-type hollow-core fibers depends strongly on the core size, where the degree of the dependence varies with the cladding tube size. The loss scales with the core diameter to the power of approximately −5.4 for commonly used tubular-type hollow-core fiber designs.


Sign in / Sign up

Export Citation Format

Share Document