wind profilers
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
James B. Duncan Jr. ◽  
Laura Bianco ◽  
Bianca Adler ◽  
Tyler Bell ◽  
Irina V. Djalalova ◽  
...  

Abstract. During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign, held in the summer of 2019 in northern Wisconsin, U.S.A., active and passive ground-based remote sensing instruments were deployed to understand the response of the planetary boundary layer to heterogeneous land surface forcing. These instruments include Radar Wind Profilers, Microwave Radiometers, Atmospheric Emitted Radiance Interferometers, Ceilometers, High Spectral Resolution Lidars, Doppler Lidars, and Collaborative Lower Atmospheric Modelling Profiling Systems that combine several of these instruments. In this study, these ground-based remote sensing instruments are used to estimate the height of the daytime planetary boundary layer, and their performance is compared against independent boundary-layer depth estimates obtained from radiosondes launched as part of the field campaign. The impact of clouds (in particular boundary layer clouds) on boundary-layer depth is also investigated. We found that while overall all instruments are able to provide reasonable boundary-layer depth estimates, each of them shows strengths and weaknesses under certain conditions. For example, Radar Wind Profilers perform well during cloud free conditions, and Microwave Radiometers and Atmospheric Emitted Radiance Interferometers have a very good agreement during all conditions, but are limited by the smoothness of the retrieved thermodynamic profiles. The estimates from Ceilometers and High Spectral Resolution Lidars can be hindered by the presence of elevated aerosol layers or clouds, and the multi-instrument retrieval from the Collaborative Lower Atmospheric Modelling Profiling Systems can be constricted to a limited height range in low aerosol conditions.


2021 ◽  
Vol 14 (11) ◽  
pp. 7255-7275
Author(s):  
Hironori Iwai ◽  
Makoto Aoki ◽  
Mitsuru Oshiro ◽  
Shoken Ishii

Abstract. The first space-based Doppler wind lidar (DWL) on board the Aeolus satellite was launched by the European Space Agency (ESA) on 22 August 2018 to obtain global profiles of horizontal line-of-sight (HLOS) wind speed. In this study, the Raleigh-clear and Mie-cloudy winds for periods of baseline 2B02 (from 1 October to 18 December 2018) and 2B10 (from 28 June to 31 December 2019 and from 20 April to 8 October 2020) were validated using 33 wind profilers (WPRs) installed all over Japan, two ground-based coherent Doppler wind lidars (CDWLs), and 18 GPS radiosondes (GPS-RSs). In particular, vertical and seasonal analyses were performed and discussed using WPR data. During the baseline 2B02 period, a positive bias was found to be in the ranges of 0.5 to 1.7 m s−1 for Rayleigh-clear winds and 1.6 to 2.4 m s−1 for Mie-cloudy winds using the three independent reference instruments. The statistical comparisons for the baseline 2B10 period showed smaller biases, −0.8 to 0.5 m s−1 for the Rayleigh-clear and −0.7 to 0.2 m s−1 for the Mie-cloudy winds. The vertical analysis using WPR data showed that the systematic error was slightly positive in all altitude ranges up to 11 km during the baseline 2B02 period. During the baseline 2B10 period, the systematic errors of Rayleigh-clear and Mie-cloudy winds were improved in all altitude ranges up to 11 km as compared with the baseline 2B02. Immediately after the launch of Aeolus, both Rayleigh-clear and Mie-cloudy biases were small. Within the baseline 2B02, the Rayleigh-clear and Mie-cloudy biases showed a positive trend. For the baseline 2B10, the Rayleigh-clear wind bias was generally negative for all months except August 2020, and Mie-cloudy wind bias gradually fluctuated. Both Rayleigh-clear and Mie-cloudy biases did not show a marked seasonal trend and approached zero towards September 2020. The dependence of the Rayleigh-clear wind bias on the scattering ratio was investigated, showing that there was no significant bias dependence on the scattering ratio during the baseline 2B02 and 2B10 periods. Without the estimated representativeness error associated with the comparisons using WPR observations, the Aeolus random error was determined to be 6.7 (5.1) and 6.4 (4.8) m s−1 for Rayleigh-clear (Mie-cloudy) winds during the baseline 2B02 and 2B10 periods, respectively. The main reason for the large Aeolus random errors is the lower laser energy compared to the anticipated 80 mJ. Additionally, the large representativeness error of the WPRs is probably related to the larger Aeolus random error. Using the CDWLs, the Aeolus random error estimates were in the range of 4.5 to 5.3 (2.9 to 3.2) and 4.8 to 5.2 (3.3 to 3.4) m s−1 for Rayleigh-clear (Mie-cloudy) winds during the baseline 2B02 and 2B10 periods, respectively. By taking the GPS-RS representativeness error into account, the Aeolus random error was determined to be 4.0 (3.2) and 3.0 (2.9) m s−1 for Rayleigh-clear (Mie-cloudy) winds during the baseline 2B02 and 2B10 periods, respectively.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1284
Author(s):  
Zhao-Yu Chen ◽  
Yen-Hsyang Chu ◽  
Ching-Lun Su

Concurrent measurements of three-dimensional wind velocities made with three co-located wind profilers operated at frequencies of 52 MHz, 449 MHz, and 1.29 GHz for the period 12–16 September 2017 are compared for the first time in this study. The velocity–azimuth display (VAD) method is employed to estimate the wind velocities. The result shows that, in the absence of precipitation, the root mean square difference (RMSD) in the horizontal wind speed velocities U and wind directions D between different pairs of wind profilers are, respectively, in the range of 0.94–0.99 ms−1 and 7.7–8.3°, and those of zonal wind component u and meridional wind component v are in the respective ranges of 0.91–1.02 ms−1 and 1.1–1.24 ms−1. However, the RMSDs between wind profilers and rawinsonde are in the range of 2.89–3.26 ms−1 for horizontal wind speed velocity and 11.17–14.48° for the wind direction, which are around 2–3 factors greater than those between the wind profilers on average. In addition to the RMSDs, MDs between wind profilers and radiosonde are around one order of magnitude larger than those between wind profilers. These results show that the RMSDs, MDs, and Stdds between radars are highly consistent with each other, and they are much smaller than those between radar and rawinsonde. This therefore suggests that the wind profiler-measured horizontal wind velocities are much more reliable, precise, and accurate than the rawinsonde measurement.


2021 ◽  
Author(s):  
Hironori Iwai ◽  
Makoto Aoki ◽  
Mitsuru Oshiro ◽  
Shoken Ishii

Abstract. The first space-based Doppler wind lidar (DWL) onboard the Aeolus satellite was launched by the European Space Agency (ESA) on 22 August 2018 to obtain global profiles of horizontal line-of-sight (HLOS) wind speed. In this study, the Raleigh-clear and Mie-cloudy winds for periods of baseline 2B02 (from 1 October to 18 December 2018) and 2B10 (from 28 June to 31 December 2019 and from 20 April to 8 October 2020) were validated using 33 wind profilers (WPRs) installed all over Japan, two ground-based coherent Doppler wind lidars (CDWLs), and 18 GPS-radiosondes (GPS-RSs). In particular, vertical and seasonal analyses were performed and discussed using WPR data. During the baseline 2B02 period, a positive bias was found to be in the ranges of 0.46–1.69 m s−1 for Rayleigh-clear winds and 1.63–2.42 m s−1 for Mie-cloudy winds using the three independent reference instruments. The biases of Rayleigh-clear and Mie-cloudy winds were in the ranges of −0.82−+0.45 m s−1 and −0.71−+0.16 m s−1 during the baseline 2B10 period, respectively. The systematic error for the baseline 2B10 was improved as compared with that for the baseline 2B02. The vertical analysis using WPR data showed that the systematic error was slightly positive in all altitude ranges up to 11 km during the baseline 2B02 period. During the baseline 2B10 period, the systematic errors of Rayleigh-clear and Mie-cloudy winds were improved in all altitude ranges up to 11 km as compared with the baseline 2B02. Immediately after the launch of Aeolus, both Rayleigh-clear and Mie-cloudy biases were small. Within the baseline 2B02, the Rayleigh-clear and Mie-cloudy biases showed a positive trend. For the baseline 2B10, the Rayleigh-clear wind bias was generally negative at all months except August 2020, and Mie-cloudy wind bias gradually fluctuated. The systematic error was close to zero with time in 2020 and did not show a marked seasonal trend. The dependence of the Rayleigh-clear wind bias on the scattering ratio was investigated, showing that the scattering ratio had a minimal effect on the systematic error of the Rayleigh-clear winds during the baseline 2B02 period. On the other hand, during the baseline 2B10 period, there was no significant bias dependence on the scattering ratio. Without the estimated representativeness error associated with the comparisons using WPR observations, the Aeolus random error was determined to be 6.71 (5.12) and 6.42 (4.80) m s−1 for Rayleigh-clear (Mie-cloudy) winds during the baseline 2B02 and 2B10 periods, respectively. The main reason for the large random errors is probably related to the large representativeness error due to the large sampling volume of the WPRs. Using the CDWLs, the Aeolus random error estimates were in the range of 4.49–5.31 (2.93–3.19) and 4.81–5.21 (3.30–3.37) m s−1 for Rayleigh-clear (Mie-cloudy) winds during the baseline 2B02 and 2B10 periods, respectively. By taking the GPS-RS representativeness error into account, the Aeolus random error was determined to be 4.01 (3.24) and 3.02 (2.89) m s−1 for Rayleigh-clear (Mie-cloudy) winds during the baseline 2B02 and 2B10 periods, respectively.


2021 ◽  
Vol 21 (1) ◽  
pp. 463-480
Author(s):  
Nadia Fourrié ◽  
Mathieu Nuret ◽  
Pierre Brousseau ◽  
Olivier Caumont

Abstract. This study was performed in the framework of HyMeX (Hydrological cycle in the Mediterranean Experiment), which aimed to study the heavy precipitation that regularly affects the Mediterranean area. A reanalysis with a convective-scale model AROME-WMED (Application of Research to Operations at MEsoscale western Mediterranean) was performed, which assimilated most of the available data for a 2-month period corresponding to the first special observation period of the field campaign (Fourrié et al., 2019). Among them, observations related to the low-level humidity flow were assimilated. Such observations are important for the description of the feeding of the convective mesoscale systems with humidity (Duffourg and Ducrocq, 2011; Bresson et al., 2012; Ricard et al., 2012). Among them there were a dense reprocessed network of high-quality Global Navigation Satellite System (GNSS) zenithal total delay (ZTD) observations, reprocessed data from wind profilers, lidar-derived vertical profiles of humidity (ground and airborne) and Spanish radar data. The aim of the paper is to assess the impact of the assimilation of these four observation types on the analyses and the forecasts from the 3 h forecast range (first guess) up to the 48 h forecast range. In order to assess this impact, several observing system experiments (OSEs) or so-called denial experiments, were carried out by removing one single data set from the observation data set assimilated in the reanalysis. Among the evaluated observations, it is found that the ground-based GNSS ZTD data set provides the largest impact on the analyses and the forecasts, as it represents an evenly spread and frequent data set providing information at each analysis time over the AROME-WMED domain. The impact of the reprocessing of GNSS ZTD data also improves the forecast quality, but this impact is not statistically significant. The assimilation of the Spanish radar data improves the 3 h precipitation forecast quality as well as the short-term (30 h) precipitation forecasts, but this impact remains located over Spain. Moreover, marginal impact from wind profilers was observed on wind background quality. No impacts have been found regarding lidar data, as they represent a very small data set, mainly located over the sea.


2020 ◽  
Author(s):  
Nadia Fourrié ◽  
Mathieu Nuret ◽  
Pierre Brousseau ◽  
Olivier Caumont

Abstract. This paper presents the results of several observing system experiments (OSEs) performed with AROME-WMED. This model is the HyMeX (Hydrological cycle in the Mediterranean Experiment) dedicated version (Fourrié et al., 2019) of the French operational meso-scale model AROME. The second and final reanalyses assimilated most of all available data for a 2 month period corresponding to the first Special Observation Period of HyMeX. In order to assess the impact of various observation data set assimilation on the forecasts, several OSEs or also-called denial experiments, were carried out. In this study, impact of a dense reprocessed network of high quality Global Navigation Satellite System (GNSS) Zenithal Total Delay (ZTD) observations, reprocessed wind-Profilers, lidar-derived vertical profiles of humidity (ground and airborne) and Spanish radar data, is thus discussed. Among the evaluated observations, it is found that the ground-based GNSS ZTD data set provides the largest impact on the analyses and the forecasts as it represents an evenly spread and frequent data set providing information at each analysis time over the AROME-WMED domain. The impact of the reprocessing of GNSS ZTD data also improves the forecast quality but this impact is not statistically significant. The assimilation of the Spanish radar data improves the very short term forecast quality as well as the short term forecasts but this impact remains located over Spain. Marginal impact from wind profilers was observed on wind background quality. No impacts have been found regarding lidar data as they represent a very small data set.


2020 ◽  
Vol 12 (10) ◽  
pp. 1657 ◽  
Author(s):  
Boming Liu ◽  
Jianping Guo ◽  
Wei Gong ◽  
Yifan Shi ◽  
Shikuan Jin

The turbulent mixing and dispersion of air pollutants is strongly dependent on the vertical structure of the wind, which constitutes one of the major challenges affecting the determination of boundary layer height (BLH). Here, an adaptive method is proposed to estimate BLH from measurements of radar wind profilers (RWPs) in Beijing (BJ), Nanjing (NJ), Chongqing (CQ), and Wulumuqi (WQ), China, during the summer of 2019. Validation against simultaneous BLH estimates from radiosondes (RSs) yielded a correlation coefficient of 0.66, indicating that the method can be used to derive BLH from RWPs. Diurnal variations of BLH and the ventilation coefficient (VC) at four sites were then examined. A distinct diurnal cycle of BLH was observed over all four cities; BLH gradually increased from sunset, reached a maximum in the afternoon, and then dropped sharply after sunset. The maximum hourly average BLH (1.426 ± 0.46 km) occurred in WQ, consistent with the maximum hourly mean VC larger than 5000 m2/s observed there. By comparison, the diurnal variation of VC was not strong, with values ranging between 2000 and 3000 m2/s, likely owing to the high-humidity environment. Furthermore, surface sensible heat flux, latent heat flux, and dry mass of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5) concentrations were found to somehow affect the vertical structure of wind and thermodynamic features, leading to a difference between RS and RWP BLH estimates. This indicates that the atmospheric environment can affect BLH estimates using RWP data. The BLH results from RWPs were better in some specific cases. These findings show great potential of RWP measurements in air quality research, and will provide key data references for policy-making toward emission reductions.


2019 ◽  
Vol 58 (12) ◽  
pp. 2533-2551 ◽  
Author(s):  
Katherine McCaffrey ◽  
James M. Wilczak ◽  
Laura Bianco ◽  
Eric Grimit ◽  
Justin Sharp ◽  
...  

AbstractCold pool events occur when deep layers of stable, cold air remain trapped in a valley or basin for multiple days, without mixing out from daytime heating. With large impacts on air quality, freezing events, and especially on wind energy production, they are often poorly forecast by modern mesoscale numerical weather prediction (NWP) models. Understanding the characteristics of cold pools is, therefore, important to provide more accurate forecasts. This study analyzes cold pool characteristics with data collected during the Second Wind Forecast Improvement Project (WFIP2), which took place in the Columbia River basin and Gorge of Oregon and Washington from fall 2015 until spring 2017. A subset of the instrumentation included three microwave radiometer profilers, six radar wind profilers with radio acoustic sounding systems, and seven sodars, which together provided seven sites with collocated vertical profiles of temperature, humidity, wind speed, and wind direction. Using these collocated observations, we developed a set of criteria to determine if a cold pool was present based on stability, wind speed, direction, and temporal continuity, and then developed an automated algorithm based on these criteria to identify all cold pool events over the 18 months of the field project. Characteristics of these events are described, including statistics of the wind speed distributions and profiles, stability conditions, cold pool depths, and descent rates of the cold pool top. The goal of this study is a better understanding of these characteristics and their processes to ultimately lead to improved physical parameterizations in NWP models, and consequently improve forecasts of cold pool events in the study region as well at other locations that experiences similar events.


2019 ◽  
Vol 147 (8) ◽  
pp. 2739-2764 ◽  
Author(s):  
Samuel K. Degelia ◽  
Xuguang Wang ◽  
David J. Stensrud

Abstract Numerical weather prediction models often fail to correctly forecast convection initiation (CI) at night. To improve our understanding of such events, researchers collected a unique dataset of thermodynamic and kinematic remote sensing profilers as part of the Plains Elevated Convection at Night (PECAN) experiment. This study evaluates the impacts made to a nocturnal CI forecast on 26 June 2015 by assimilating a network of atmospheric emitted radiance interferometers (AERIs), Doppler lidars, radio wind profilers, high-frequency rawinsondes, and mobile surface observations using an advanced, ensemble-based data assimilation system. Relative to operational forecasts, assimilating the PECAN dataset improves the timing, location, and orientation of the CI event. Specifically, radio wind profilers and rawinsondes are shown to be the most impactful instrument by enhancing the moisture advection into the region of CI in the forecast. Assimilating thermodynamic profiles collected by the AERIs increases midlevel moisture and improves the ensemble probability of CI in the forecast. The impacts of assimilating the radio wind profilers, AERI retrievals, and rawinsondes remain large throughout forecasting the growth of the CI event into a mesoscale convective system. Assimilating Doppler lidar and surface data only slightly improves the CI forecast by enhancing the convergence along an outflow boundary that partially forces the nocturnal CI event. Our findings suggest that a mesoscale network of profiling and surface instruments has the potential to greatly improve short-term forecasts of nocturnal convection.


Sign in / Sign up

Export Citation Format

Share Document