scholarly journals Improving Surface PM 2.5 Forecasts in the United States Using an Ensemble of Chemical Transport Model Outputs: 1. Bias Correction With Surface Observations in Nonrural Areas

2020 ◽  
Vol 125 (14) ◽  
Author(s):  
Huanxin Zhang ◽  
Jun Wang ◽  
Lorena Castro García ◽  
Cui Ge ◽  
Todd Plessel ◽  
...  
2016 ◽  
Vol 16 (18) ◽  
pp. 12305-12328 ◽  
Author(s):  
Luke D. Schiferl ◽  
Colette L. Heald ◽  
Martin Van Damme ◽  
Lieven Clarisse ◽  
Cathy Clerbaux ◽  
...  

Abstract. The variability of atmospheric ammonia (NH3), emitted largely from agricultural sources, is an important factor when considering how inorganic fine particulate matter (PM2.5) concentrations and nitrogen cycling are changing over the United States. This study combines new observations of ammonia concentration from the surface, aboard aircraft, and retrieved by satellite to both evaluate the simulation of ammonia in a chemical transport model (GEOS-Chem) and identify which processes control the variability of these concentrations over a 5-year period (2008–2012). We find that the model generally underrepresents the ammonia concentration near large source regions (by 26 % at surface sites) and fails to reproduce the extent of interannual variability observed at the surface during the summer (JJA). Variability in the base simulation surface ammonia concentration is dominated by meteorology (64 %) as compared to reductions in SO2 and NOx emissions imposed by regulation (32 %) over this period. Introduction of year-to-year varying ammonia emissions based on animal population, fertilizer application, and meteorologically driven volatilization does not substantially improve the model comparison with observed ammonia concentrations, and these ammonia emissions changes have little effect on the simulated ammonia concentration variability compared to those caused by the variability of meteorology and acid-precursor emissions. There is also little effect on the PM2.5 concentration due to ammonia emissions variability in the summer when gas-phase changes are favored, but variability in wintertime emissions, as well as in early spring and late fall, will have a larger impact on PM2.5 formation. This work highlights the need for continued improvement in both satellite-based and in situ ammonia measurements to better constrain the magnitude and impacts of spatial and temporal variability in ammonia concentrations.


Author(s):  
Niru Senthilkumar ◽  
Mark Gilfether ◽  
Francesca Metcalf ◽  
Armistead G. Russell ◽  
James A. Mulholland ◽  
...  

Accurate spatiotemporal air quality data are critical for use in assessment of regulatory effectiveness and for exposure assessment in health studies. A number of data fusion methods have been developed to combine observational data and chemical transport model (CTM) results. Our approach focuses on preserving the temporal variation provided by observational data while deriving the spatial variation from the community multiscale air quality (CMAQ) simulations, a type of CTM. Here we show the results of fusing regulatory monitoring observational data with 12 km resolution CTM simulation results for 12 pollutants (CO, NOx, NO2, SO2, O3, PM2.5, PM10, NO3−, NH4+, EC, OC, SO42−) over the contiguous United States on a daily basis for a period of ten years (2005–2014). An annual mean regression between the CTM simulations and observational data is used to estimate the average spatial fields, and spatial interpolation of observations normalized by predicted annual average is used to provide the daily variation. Results match the temporal variation well (R2 values ranging from 0.84–0.98 across pollutants) and the spatial variation less well (R2 values 0.42–0.94). Ten-fold cross validation shows normalized root mean square error values of 60% or less and spatiotemporal R2 values of 0.4 or more for all pollutants except SO2.


2010 ◽  
Vol 10 (9) ◽  
pp. 21259-21301 ◽  
Author(s):  
H. O. T. Pye ◽  
A. W. H. Chan ◽  
M. P. Barkley ◽  
J. H. Seinfeld

Abstract. Reactive nitrogen compounds, specifically NOx and NO3, likely influence global organic aerosol levels. To assess these interactions, GEOS-Chem, a chemical transport model, is updated to include improved biogenic emissions (following MEGAN v2.1/2.04), a new organic aerosol tracer lumping scheme, aerosol from nitrate radical (NO3) oxidation of isoprene, and NOx-dependent terpene aerosol yields. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and relatively high aerosol yields from NO3 oxidation, biogenic hydrocarbon-NO3 reactions are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. By including aerosol from nitrate radical oxidation in GEOS-Chem, terpene aerosol approximately doubles and isoprene aerosol is enhanced by 30 to 40% in the Southeast United States. In terms of the global budget of organic aerosol, however, aerosol from nitrate radical oxidation is somewhat minor (slightly more than 3 Tg/yr) due to the relatively high volatility of organic-NO3 oxidation products. Globally, 69 to 88 Tg/yr of organic aerosol is predicted to be produced annually, of which 14–15 Tg/yr is from oxidation of monoterpenes and sesquiterpenes and 8–9 Tg/yr from isoprene.


2020 ◽  
Author(s):  
Yang Li ◽  
Loretta J. Mickley ◽  
Pengfei Liu ◽  
Jed O. Kaplan

Abstract. Almost US$ 3bn per year is appropriated for wildfire management on public land in the United States. Recent studies have suggested that ongoing climate change will lead to warmer and drier conditions in the Western United States with a consequent increase in the number and size of wildfires, yet large uncertainty exists in these projections. To assess the influence of future changes in climate and land cover on lightning-caused wildfires in National Forests and Parks of the Western United States and the consequences of these fires on air quality, we link a dynamic vegetation model that includes a process-based representation of fire (LPJ-LMfire) to a global chemical transport model (GEOS-Chem). Under a scenario of moderate future climate change (RCP4.5), increasing lightning-caused wildfire enhances the burden of smoke fine particulate matter (PM), with mass concentration increases of ~ 53 % by the late-21st century during the fire season. In a high-emissions scenario (RCP8.5), smoke PM concentrations double by 2100. RCP8.5 also shows large, northward shifts in dry matter burned, leading to enhanced lightning-caused fire activity especially over forests in the northern states.


2016 ◽  
Author(s):  
Luke D. Schiferl ◽  
Colette L. Heald ◽  
Martin Van Damme ◽  
Lieven Clarisse ◽  
Cathy Clerbaux ◽  
...  

Abstract. The variability of atmospheric ammonia (NH3), emitted largely from agricultural sources, is an important factor when considering how inorganic fine particulate matter (PM2.5) concentrations and nitrogen cycling are changing over the United States. This study combines new observations of ammonia concentration from the surface, aboard aircraft, and retrieved by satellite to both evaluate the simulation of ammonia in a chemical transport model (GEOS-Chem) and identify which processes control the variability of these concentrations over a 5-year period (2008–2012). We find that the model generally underrepresents the ammonia concentration near large source regions and fails to reproduce the extent of interannual variability observed at the surface during the summer (JJA). Variability in the base simulation surface ammonia concentration is dominated by meteorology (64 %) as compared to reductions in SO2 and NOx emissions imposed by regulation (32 %) over this period. Introduction of year-to-year varying ammonia emissions based on animal population, fertilizer application, and meteorologically driven volatilization does not substantially improve the model comparison with observed ammonia concentrations, and these ammonia emissions changes have little effect on the simulated ammonia concentration variability compared to those caused by the variability of meteorology and acid-precursor emissions. There is also little effect on the PM2.5 concentration due to ammonia emissions variability in the summer when gas-phase changes are favored, but variability in wintertime emissions, as well as in early spring and late fall, will have a larger impact on PM2.5 formation. Further, this work highlights the need for continued improvement in both satellite-based and in situ ammonia measurements to better constrain the magnitude and impacts of spatial and temporal variability in ammonia concentrations.


2020 ◽  
Vol 20 (14) ◽  
pp. 8827-8838
Author(s):  
Yang Li ◽  
Loretta J. Mickley ◽  
Pengfei Liu ◽  
Jed O. Kaplan

Abstract. Almost USD 3 billion per year is appropriated for wildfire management on public land in the United States. Recent studies have suggested that ongoing climate change will lead to warmer and drier conditions in the western United States, with a consequent increase in the number and size of wildfires, yet large uncertainty exists in these projections. To assess the influence of future changes in climate and land cover on lightning-caused wildfires in the national forests and parks of the western United States and the consequences of these fires on air quality, we link a dynamic vegetation model that includes a process-based representation of fire (LPJ-LMfire) to a global chemical transport model (GEOS-Chem). Under a scenario of moderate future climate change (RCP4.5), increasing lightning-caused wildfire enhances the burden of smoke fine particulate matter (PM), with mass concentration increases of ∼53 % by the late 21st century during the fire season in the national forests and parks of the western United States. In a high-emissions scenario (RCP8.5), smoke PM concentrations double by 2100. RCP8.5 also shows enhanced lightning-caused fire activity, especially over forests in the northern states.


2010 ◽  
Vol 10 (22) ◽  
pp. 11261-11276 ◽  
Author(s):  
H. O. T. Pye ◽  
A. W. H. Chan ◽  
M. P. Barkley ◽  
J. H. Seinfeld

Abstract. Reactive nitrogen compounds, specifically NOx and NO3, likely influence global organic aerosol levels. To assess these interactions, GEOS-Chem, a chemical transport model, is updated to include improved biogenic emissions (following MEGAN v2.1/2.04), a new organic aerosol tracer lumping scheme, aerosol from nitrate radical (NO3) oxidation of isoprene, and NOx-dependent monoterpene and sesquiterpene aerosol yields. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and relatively high aerosol yields from NO3 oxidation, biogenic hydrocarbon-NO3 reactions are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. By including aerosol from nitrate radical oxidation in GEOS-Chem, terpene (monoterpene + sesquiterpene) aerosol approximately doubles and isoprene aerosol is enhanced by 30 to 40% in the Southeast United States. In terms of the global budget of organic aerosol, however, aerosol from nitrate radical oxidation is somewhat minor (slightly more than 3 Tg/yr) due to the relatively high volatility of organic-NO3 oxidation products in the yield parameterization. Globally, 69 to 88 Tg/yr of organic aerosol is predicted to be produced annually, of which 14–15 Tg/yr is from oxidation of monoterpenes and sesquiterpenes and 8–9 Tg/yr from isoprene.


Sign in / Sign up

Export Citation Format

Share Document