scholarly journals Midlatitude Southern Hemisphere Temperature Change at the End of the Eocene Greenhouse Shortly Before Dawn of the Oligocene Icehouse

2019 ◽  
Vol 34 (12) ◽  
pp. 1995-2004
Author(s):  
A. M. Haiblen ◽  
B. N. Opdyke ◽  
A. P. Roberts ◽  
D. Heslop ◽  
P. A. Wilson
2006 ◽  
Vol 2 (3) ◽  
pp. 327-355 ◽  
Author(s):  
P. A. Mayewski ◽  
K. A. Maasch

Abstract. Comparison between proxies for atmospheric circulation and temperature reveals associations over the last few decades that are inconsistent with those of the past 2000 years. Notably, patterns of middle to high latitude atmospheric circulation in both hemispheres are still within the range of variability of the last 6–10 centuries while, as demonstrated by Mann and Jones (2003), Northern Hemisphere temperatures over recent decades are the highest of the last 2000 years. Further, recent temperature change precedes change in middle to high latitude atmospheric circulation unlike the two most notable changes in climate of the past 2000 years during which change in atmospheric circulation preceded or coincided with change in temperature. In addition, the most prominent change in Southern Hemisphere temperature and atmospheric circulation of the past 2000, and probably 9000 years, precedes change in temperature and atmospheric circulation in the Northern Hemisphere unlike the recent change in Northern Hemisphere temperature that leads. These findings provide new verification that recent rise in temperature is inconsistent with natural climate variability and is most likely related to anthropogenic activity in the form of enhanced greenhouse gases. From our investigation we conclude that the delayed warming over much of the Southern Hemisphere may be, in addition to other factors, a consequence of underpinning by natural climate variability. Further bipolar comparison of proxy records of atmospheric circulation demonstrates that change in atmospheric circulation in the Southern Hemisphere led by 400 years, the most abrupt change in Northern Hemisphere atmospheric circulation of the last 9000 years. This finding may be highly relevant to understanding a future when warming becomes more fully established in the Southern Hemisphere.


1997 ◽  
Vol 161 ◽  
pp. 611-621
Author(s):  
Guillermo A. Lemarchand ◽  
Fernando R. Colomb ◽  
E. Eduardo Hurrell ◽  
Juan Carlos Olalde

AbstractProject META II, a full sky survey for artificial narrow-band signals, has been conducted from one of the two 30-m radiotelescopes of the Instituto Argentino de Radioastronomía (IAR). The search was performed near the 1420 Mhz line of neutral hydrogen, using a 8.4 million channels Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earths rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. Among the 2 × 1013spectral channels analyzed, 29 extra-statistical narrow-band events were found, exceeding the average threshold of 1.7 × 10−23Wm−2. The strongest signals that survive culling for terrestrial interference lie in or near the galactic plane. A description of the project META II observing scheme and results is made as well as the possible interpretation of the results using the Cordes-Lazio-Sagan model based in interstellar scattering theory.


2000 ◽  
Vol 179 ◽  
pp. 387-388
Author(s):  
Gaetano Belvedere ◽  
V. V. Pipin ◽  
G. Rüdiger

Extended AbstractRecent numerical simulations lead to the result that turbulence is much more magnetically driven than believed. In particular the role ofmagnetic buoyancyappears quite important for the generation ofα-effect and angular momentum transport (Brandenburg & Schmitt 1998). We present results obtained for a turbulence field driven by a (given) Lorentz force in a non-stratified but rotating convection zone. The main result confirms the numerical findings of Brandenburg & Schmitt that in the northern hemisphere theα-effect and the kinetic helicityℋkin= 〈u′ · rotu′〉 are positive (and negative in the northern hemisphere), this being just opposite to what occurs for the current helicityℋcurr= 〈j′ ·B′〉, which is negative in the northern hemisphere (and positive in the southern hemisphere). There has been an increasing number of papers presenting observations of current helicity at the solar surface, all showing that it isnegativein the northern hemisphere and positive in the southern hemisphere (see Rüdigeret al. 2000, also for a review).


2000 ◽  
Vol 179 ◽  
pp. 303-306
Author(s):  
S. D. Bao ◽  
G. X. Ai ◽  
H. Q. Zhang

AbstractWe compute the signs of two different current helicity parameters (i.e., αbestandHc) for 87 active regions during the rise of cycle 23. The results indicate that 59% of the active regions in the northern hemisphere have negative αbestand 65% in the southern hemisphere have positive. This is consistent with that of the cycle 22. However, the helicity parameterHcshows a weaker opposite hemispheric preference in the new solar cycle. Possible reasons are discussed.


1978 ◽  
Vol 48 ◽  
pp. 515-521
Author(s):  
W. Nicholson

SummaryA routine has been developed for the processing of the 5820 plates of the survey. The plates are measured on the automatic measuring machine, GALAXY, and the measures are subsequently processed by computer, to edit and then refer them to the SAO catalogue. A start has been made on measuring the plates, but the final selection of stars to be made is still a matter for discussion.


1979 ◽  
Vol 46 ◽  
pp. 474-503 ◽  
Author(s):  
M. Jerzykiewicz ◽  
C. Sterken

In 1975 we started a photometric search program of examining for variability- the bright early B stars located south of -20° declination. The main purpose we had in mind was to look for hitherto undiscovered 6 Cephei variables. Therefore, we limited our program to objects spectroscopically similar to the B Cephei stars.


1979 ◽  
Vol 46 ◽  
pp. 371-384 ◽  
Author(s):  
J.B. Hearnshaw

RSCVn stars are fully detached binary stars which show intrinsic small amplitude (up to 0.3 amplitude peak-to-peak) light variations, as well as, in most of the known cases, eclipses. The spectra are F to G, IV to V for the hotter component and usually KOIV for the cooler. They are also characterised by abnormally strong H and K emission from the cooler star, or, occasionally, from both components. The orbital and light curve periods are in the range 1 day to 2 weeks. An interesting feature is the migration of the light variations to earlier orbital phase, as the light variation period is shorter than the orbital period by a few parts in 10+4to a few parts in 10+3.


Sign in / Sign up

Export Citation Format

Share Document