Opposite Effects of Climate and Land Use Changes on the Annual Water Balance in the Amazon Arc of Deforestation

2019 ◽  
Vol 55 (4) ◽  
pp. 3092-3106 ◽  
Author(s):  
R. B. L. Cavalcante ◽  
P. R. M. Pontes ◽  
P. W. M. Souza‐Filho ◽  
E. B. Souza
2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


2009 ◽  
Vol 65 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Tomoyoshi HIROTA ◽  
Yukiyoshi IWATA ◽  
Manabu NEMOTO ◽  
Takahiro HAMASAKI ◽  
Ryoji SAMESHIMA ◽  
...  

2021 ◽  
Author(s):  
Renata Romanowicz ◽  
Emilia Karamuz ◽  
Jaroslaw Napiorkowski ◽  
Tesfaye Senbeta

<div> <p>Water balance modelling is often applied in studies of climate and human impacts on water resources. Annual water balance is usually derived based on precipitation, discharge and temperature observations under an assumption of negligible changes in annual water storage in a catchment. However, that assumption might be violated during very dry or very wet years. In this study we apply groundwater level measurements to improve water balance modelling in nine sub-catchments of the River Vistula basin starting from the river sources downstream. Annual and inter-annual water balance is studied using a Budyko framework to assess actual evapotranspiration and total water supply. We apply the concept of effective precipitation to account for possible losses due to water interception by vegetation. Generalised Likelihood Uncertainty Estimation GLUE is used to account for parameter and structural model uncertainty, together with the application of eight Budyko-type equations. Seasonal water balance models show large errors for winter seasons while summer and annual water balance models follow the Budyko framework. The dryness index is much smaller in winter than in summer for all sub-catchments. The spatial variability of water balance modelling errors indicate an increasing uncertainty of model predictions with an increase in catchment size. The results show that the added information on storage changes in the catchments provided by groundwater level observations largely improves model accuracy. The results also indicate the need to model groundwater level variability depending on external factors such as precipitation and evapotranspiration and human interventions. The modelling tools developed will be used to assess future water balance in the River Vistula basin under different water management scenarios and climate variability.</p> </div>


2011 ◽  
Vol 52 (No. 6) ◽  
pp. 239-244 ◽  
Author(s):  
P. Kovář

The paper is focused on the impact of land use changes on water regime. First, an emphasis was given to what extent the main components of the water balance on the experimental catchment Všeminka (region Vsetínské Hills) were influenced. For this reason, the WBCM-5 model was implemented for the period of 10 years in a daily step with a particular reference to simulate the components of direct runoff and of subsurface water recharge. In the selected years of the period 1990–2000, the major changes were made in land use and also the significant fluctuation of rainfall-runoff regimes were observed (e.g. dry year 1992 and flood year 1997). After WBCM-5 parameter calibration it was found that some water balance components can change in relation to substantial land use changes even up to tens of percent in a balance-consideration, i.e. in daily, monthly and yearly or decade values, namely the components of interception and also of direct runoff and of subsurface water recharge. However, a different situation appears when investigating significant short-term rainfall-runoff processes. There were about seven real flood events analysed using the model KINFIL-2 (time step 0.5 hr) during the same period of about 10 years on the same catchment. Furthermore, some land use change positive or negative scenarios were also analysed there. As opposed to long-term water balance analyses, there was never achieved any greater differences in the hydrograph peak or volume than 10%. Summarising, it is always important to distinguish a possible land use change impact in either long-term balance or short-term runoff consideration, otherwise a misunderstanding might be easily made, as can often be found when commenting on the impact on floods in some mass media.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Carlos Javier Villa Alvarado ◽  
Eladio Delgadillo-Ruiz ◽  
Carlos Alberto Mastachi-Loza ◽  
Enrique González-Sosa ◽  
Ramos Salinas Norma Maricela

Today the knowledge of physical parameters of a basin is essential to know adequately the rainfall-runoff process; it is well known that the specific characteristics of each basin such as temperature, geographical location, and elevation above sea level affect the maximum discharge and the basin time response. In this paper a physically based model has been applied, to analyze water balance by evaluating the volume rainfall-runoff using SHETRAN and hydrometric data measurements in 2003. The results have been compared with five ETp different methodologies in the Querétaro river basin in central Mexico. With these results the main effort of the authorities should be directed to better control of land-use changes and to working permanently in the analysis of the related parameters, which will have a similar behavior to changes currently being introduced and presented in observed values in this basin. This methodology can be a strong base for sustainable water management in a basin, the prognosis and effect of land-use changes, and availability of water and also can be used to determine application of known basin parameters, basically depending on land-use, land-use changes, and climatological database to determine the water balance in a basin.


Sign in / Sign up

Export Citation Format

Share Document