Speleothems of South American and Asian Monsoons Influenced by a Green Sahara

2020 ◽  
Vol 47 (22) ◽  
Author(s):  
Clay Tabor ◽  
Bette Otto‐Bliesner ◽  
Zhengyu Liu
2021 ◽  
Author(s):  
Clay Tabor ◽  
Bette Otto-Bliesner ◽  
Zhengyu Liu

<p>Compared to preindustrial, the mid-Holocene (6 ka) had significantly greater Northern Hemisphere summer insolation, slightly warmer global surface temperature, and slightly lower CO<sub>2</sub> concentration. Vegetation was also different during the mid-Holocene. Possibly most prominent was the growth of temperate vegetation in the now barren Sahara. This Saharan vegetation response was related to intensification of the African Monsoon associated with the mid-Holocene orbital configuration. Hydroclimate of the Asian Monsoon and South American Monsoon also responded to mid-Holocene forcings, with general wetting and drying, respectively.</p><p>The mid-Holocene is frequently used for model-proxy comparison studies. However, climate models often struggle to replicate the proxy signals of this period. Here, we attempt to reduce these model-proxy discrepancies by exploring the significance of a vegetated Sahara during the mid-Holocene. Using the water isotopologue tracer enabled version of the Community Earth System Model (iCESM1), we perform mid-Holocene simulations that include and exclude temperate vegetation in the Sahara. We compare our model results with δ<sup>18</sup>O values from mid-Holocene speleothem records in the Asian and South American Monsoon regions.</p><p>We find that inclusion of vegetated Sahara during the mid-Holocene leads to global warming, alters the hemispheric distribution of energy, and generally amplifies the δ<sup>18</sup>O of precipitation responses in the South American and Asian Monsoon regions; these feedbacks improve the δ<sup>18</sup>O agreement between model outputs and speleothem records of the mid-Holocene. Our results highlight the importance of regional vegetation alteration for accurate simulation of past climate, even when the region of study is far from the source of vegetation change.</p>


2019 ◽  
Vol 30 (6) ◽  
pp. 242-245
Author(s):  
Hamadttu A. F. El-Shafie

Four insect species were reported as new potential pests of date palm in recent years. They are sorghum chafer (Pachnoda interrupta), the rose chafer (Potosia opaca), the sericine chafer beetle (Maladera insanablis), and the South American palm borer (Pysandisia archon). The first three species belong to the order Coleoptera and the family Scarabaeidae, while the fourth species is a lepidopteran of the family Castniidae. The injury as well as the economic damage caused by the four species on date palm need to be quantified. Due to climate change and anthropogenic activities, the date palm pest complex is expected to change in the future. To the author's knowledge, this article provides the first report of sorghum chafer as a pest damaging date palm fruit.


2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


Sign in / Sign up

Export Citation Format

Share Document