Speleothems of South American and Asian Monsoons Influenced by a Green Sahara

Author(s):  
Clay Tabor ◽  
Bette Otto-Bliesner ◽  
Zhengyu Liu

<p>Compared to preindustrial, the mid-Holocene (6 ka) had significantly greater Northern Hemisphere summer insolation, slightly warmer global surface temperature, and slightly lower CO<sub>2</sub> concentration. Vegetation was also different during the mid-Holocene. Possibly most prominent was the growth of temperate vegetation in the now barren Sahara. This Saharan vegetation response was related to intensification of the African Monsoon associated with the mid-Holocene orbital configuration. Hydroclimate of the Asian Monsoon and South American Monsoon also responded to mid-Holocene forcings, with general wetting and drying, respectively.</p><p>The mid-Holocene is frequently used for model-proxy comparison studies. However, climate models often struggle to replicate the proxy signals of this period. Here, we attempt to reduce these model-proxy discrepancies by exploring the significance of a vegetated Sahara during the mid-Holocene. Using the water isotopologue tracer enabled version of the Community Earth System Model (iCESM1), we perform mid-Holocene simulations that include and exclude temperate vegetation in the Sahara. We compare our model results with δ<sup>18</sup>O values from mid-Holocene speleothem records in the Asian and South American Monsoon regions.</p><p>We find that inclusion of vegetated Sahara during the mid-Holocene leads to global warming, alters the hemispheric distribution of energy, and generally amplifies the δ<sup>18</sup>O of precipitation responses in the South American and Asian Monsoon regions; these feedbacks improve the δ<sup>18</sup>O agreement between model outputs and speleothem records of the mid-Holocene. Our results highlight the importance of regional vegetation alteration for accurate simulation of past climate, even when the region of study is far from the source of vegetation change.</p>

Author(s):  
Maria A. M. Rodrigues ◽  
Sâmia R. Garcia ◽  
Mary T. Kayano ◽  
Alan J. P. Calheiros ◽  
Rita V. Andreoli

2021 ◽  
Author(s):  
Marcela Eduarda Della Libera de Godoy ◽  
Valdir F. Novello ◽  
Francisco William Cruz

<p>South American Monsoon System (SAMS) and its main feature, the South American Convergence Zone (SACZ) are responsible for the major distribution of moisture in South America. The current work presents a novel high-resolution oxygen isotope record (δ<sup>18</sup>O) based on speleothems from southwest Amazon basin (Brazil), right at SAMS' core region and SACZ onset, where there is still a gap of high resolution paleoclimate records. The novel δ<sup>18</sup>O record presents an average of 3 year-resolution, composed by 1344 stable isotope analysis performed in two speleothems with a well-resolved chronology (37 U/Th ages) with average errors <1%. This work aims to describe the rainfall variability of the core region of the South American monsoon for the last 3k years and to take a broader look at precipitation patterns over Amazon basin. The Rondônia δ18O record shows three main stages throughout this time period. The first is from -1000 to ~400 CE, where it’s in accordance with most of other paleorecords from the Amazon basin. the second segment  is from ~400 to 1200 CE, when there is a continuous increase in the δ18O record until it reaches its highest values around 850 CE during the MCA (800-1200 CE), which is in accordance with western Amazon records, whilst the record in eastern Amazon presents an opposite trend. Thus, a precipitation dipole over Amazon emerges from ~400 CE onwards, majorly triggered by anomalous climate changes such as MCA, where western (eastern) Amazon is drier (wetter). During LIA (1450-1800 CE), on the other hand, Rondônia record presents its lowest values, also agreeing with western records and with records under the influence of SACZ whilst on eastern Amazon a drier period is established. Therefore, with this novel paleoclimate record located at the core region of SAMS, it's possible to evidence the dynamics of the precipitation dipole over the Amazon region, as well as understand the SACZ intensity variations.</p>


2019 ◽  
Author(s):  
Nicholas A. Davis ◽  
Sean M. Davis ◽  
Robert W. Portmann ◽  
Eric Ray ◽  
Karen H. Rosenlof ◽  
...  

Abstract. Specified dynamics (SD) schemes relax the circulation in climate models toward a reference meteorology to simulate historical variability. These simulations are widely used to isolate the dynamical contributions to variability and trends in trace gas species. However, it is not clear if trends in the stratospheric overturning circulation are properly reproduced by SD schemes. This study assesses numerous SD schemes and modeling choices in the Community Earth System Model (CESM) Whole Atmosphere Chemistry Climate Model (WACCM) to determine a set of best practices for reproducing interannual variability and trends in tropical stratospheric upwelling estimated by reanalyses. Nudging toward the reanalysis meteorology as is typically done in SD simulations expectedly changes the model’s mean upwelling compared to its free-running state, but does not accurately reproduce upwelling trends present in the underlying reanalysis. In contrast, nudging to anomalies from the climatological winds or from the zonal mean winds and temperatures preserves WACCM’s climatology and better reproduces trends in stratospheric upwelling. An SD scheme’s performance in simulating the acceleration of the shallow branch of the mean meridional circulation from 1980–2017 hinges on its ability to simulate the downward shift of subtropical lower stratospheric wave momentum forcing. Key to this is not nudging the zonal-mean temperature field. Gravity wave momentum forcing, which drives a substantial fraction of the upwelling in WACCM, cannot be constrained by nudging and presents an upper-limit on the performance of these schemes.


2017 ◽  
Vol 37 ◽  
pp. 878-896 ◽  
Author(s):  
Iracema Fonseca de Albuquerque Cavalcanti ◽  
Adma Raia

2020 ◽  
Vol 13 (2) ◽  
pp. 717-734 ◽  
Author(s):  
Nicholas A. Davis ◽  
Sean M. Davis ◽  
Robert W. Portmann ◽  
Eric Ray ◽  
Karen H. Rosenlof ◽  
...  

Abstract. Specified dynamics (SD) schemes relax the circulation in climate models toward a reference meteorology to simulate historical variability. These simulations are widely used to isolate the dynamical contributions to variability and trends in trace gas species. However, it is not clear if trends in the stratospheric overturning circulation are properly reproduced by SD schemes. This study assesses numerous SD schemes and modeling choices in the Community Earth System Model (CESM) Whole Atmosphere Chemistry Climate Model (WACCM) to determine a set of best practices for reproducing interannual variability and trends in tropical stratospheric upwelling estimated by reanalyses. Nudging toward the reanalysis meteorology as is typically done in SD simulations does not accurately reproduce lower-stratospheric upwelling trends present in the underlying reanalysis. In contrast, nudging to anomalies from the climatological winds or anomalies from the zonal-mean winds and temperatures better reproduces trends in lower-stratospheric upwelling, possibly because these schemes do not disrupt WACCM's climatology. None of the schemes substantially alter the structure of upwelling trends – instead, they make the trends more or less AMIP-like. An SD scheme's performance in simulating the acceleration of the shallow branch of the mean meridional circulation from 1980 to 2017 hinges on its ability to simulate the downward shift of subtropical lower-stratospheric wave momentum forcing. Key to this is not nudging the zonal-mean temperature field. Gravity wave momentum forcing, which drives a substantial fraction of the upwelling in WACCM, cannot be constrained by nudging and presents an upper limit on the performance of these schemes.


2020 ◽  
Vol 47 (14) ◽  
Author(s):  
Alicia Hou ◽  
André Bahr ◽  
Jacek Raddatz ◽  
Silke Voigt ◽  
Markus Greule ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document