scholarly journals Predicting Geothermal Heat Flow in Antarctica with a Machine Learning Approach

Author(s):  
M. Lösing ◽  
J. Ebbing
2020 ◽  
Author(s):  
Mareen Lösing ◽  
Jörg Ebbing ◽  
Wolfgang Szwillus

<p>Improving the understanding of geothermal heat flux in Antarctica is crucial for ice-sheet modelling and glacial isostatic adjustment. It affects the ice rheology and can lead to basal melting, thereby promoting ice flow. Direct measurements are sparse and models inferred from e.g. magnetic or seismological data differ immensely. By Bayesian inversion, we evaluated the uncertainties of some of these models and studied the interdependencies of the thermal parameters. In contrast to previous studies, our method allows the parameters to vary laterally, which leads to a heterogeneous West- and a slightly more homogeneous East Antarctica with overall lower surface heat flux. The Curie isotherm depth and radiogenic heat production have the strongest impact on our results but both parameters have a high uncertainty.</p><p>To overcome such shortcomings, we adopt a machine learning approach, more specifically a Gradient Boosted Regression Tree model, in order to find an optimal predictor for locations with sparse measurements. However, this approach largely relies on global data sets, which are notoriously unreliable in Antarctica. Therefore, validity and quality of the data sets is reviewed and discussed. Using regional and more detailed data sets of Antarctica’s Gondwana neighbors might improve the predictions due to their similar tectonic history. The performance of the machine learning algorithm can then be examined by comparing the predictions to the existing measurements. From our study, we expect to get new insights in the geothermal structure of Antarctica, which will help with future studies on the coupling of Solid Earth and Cryosphere.</p>


2017 ◽  
Vol 44 (24) ◽  
Author(s):  
Soroush Rezvanbehbahani ◽  
Leigh A. Stearns ◽  
Amir Kadivar ◽  
J. Doug Walker ◽  
C. J. van der Veen

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document