scholarly journals A Climatology of the Marine Atmospheric Boundary Layer Over the Southern Ocean From Four Field Campaigns During 2016–2018

2020 ◽  
Vol 125 (20) ◽  
Author(s):  
S. C. H. Truong ◽  
Y. Huang ◽  
F. Lang ◽  
M. Messmer ◽  
I. Simmonds ◽  
...  
2021 ◽  
Author(s):  
Neha Salim ◽  
Harilal B Menon ◽  
Nadimpally V P Kiran Kumar

<p>The study deals with the thermodynamic characterization of marine atmospheric boundary layer (MABL) prevailing over regions of Indian Ocean and Indian Ocean sector of Southern Ocean from 29 high-resolution radiosondes launched during the International Indian Ocean Expedition (IIOE-2) and Southern Ocean Expedition (SOE-9). IIOE-2 was conducted during December 2015 onboard ORV Sagar Nidhi during which 11 radiosondes were launched, whereas SOE-9 was conducted during January-March 2017 onboard MV SA Agulhas which had 18 radiosonde ascents. These observations spanned latitudes from ~15<sup>o</sup>N to 70<sup>o</sup>S having crossed three major atmospheric circulation cells: Hadley cell, Ferrell cell and Polar cell. In addition, crucial atmospheric mesoscale phenomena such as inter-tropical convergence zone (ITCZ), sub-tropical jet (STJ) and polar jet (PJ) were encountered along with several oceanic fronts. Analysis of thermodynamic structure of MABL showed large variability in the formation of atmospheric sub-layers such as surface layer, mixed layer, cloud layer and trade wind inversion layer within MABL. MABL height varied spatially from tropics and mid-latitudes (12<sup>o</sup>N to 50<sup>o</sup>S) to polar latitudes (60<sup>o</sup>S to 68<sup>o</sup>S). Deep mixed layer were found over the tropics and mid-latitudes (~700 m) while shallow mixed layer was observed over the polar latitudes (~200 m). Deep mixed layer over the tropics were attributed to intense convective mixing while shallow mixed layer over polar regions was attributed to limited convective overturning associated with negative radiation balance at the surface. Convection was negligible over mid-latitudes (43<sup>o</sup>S to 55<sup>o</sup>S) where most of the atmospheric mixing were forced by frontal systems where lifting of air mass was mechanically driven by high speed winds rather than by convection. The enhanced convection over the tropics was confirmed from higher values of convective available potential energy (CAPE > 1000 J/kg) and large negative values of convective inhibition energy (CINE < -50 J/kg). Over the mid-latitude region (43<sup>o</sup>S to 50<sup>o</sup>S), enhanced advection and detrainment of convection was evident with maximum values of BRN shear (~65 knots) and lowest CAPE (~4 J/kg). Over polar latitudes (~60<sup>o</sup>S to 68<sup>o</sup>S), minimum CAPE (~17 J/kg) and low BRN shear (~5 knots) was noticed, which indicated presence of stable boundary layer conditions. A mesoscale phenomenon (i.e., ITCZ) was witnessed at ~5.92<sup>o</sup>S with highest CAPE ~2535.17 J/kg which signifies large convective instability resulting in strong convective updraft aiding thunderstorm activity and moderate precipitation over ITCZ. Analysis of conserved variables (CVA) revealed formation of second mixed layer (SML) structure between 12<sup>o</sup>N and 40<sup>o</sup>S. However, south of 40<sup>o</sup>S this structure ceases. The characteristics of SML structure and the plausible causes for its existence are also investigated.  </p>


Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 1001-1023 ◽  
Author(s):  
C. Messager ◽  
S. Speich ◽  
E. Key

Abstract. A set of meteorological instruments was added to an oceanographic cruise crossing the Southern Ocean from Cape Town to 57°33' S during the summer of 2008. The Cape Cauldron, the Subtropical, Subantarctic, Polar and southern Antarctic Circumpolar current fronts were successively crossed. The recorded data permitted to derive the exchange of momentum, heat and water vapour at the ocean-atmosphere interface. A set of 38 radiosonde releases complemented the dataset. The marine atmospheric boundary layer characteristics and air-sea interaction when the ship crossed the fronts and eddies are discussed. The specific role of the atmospheric synoptic systems advection on the air-sea interaction over these regions is highlighted. Additionally, the Subantarctic front mesoscale variability induced an anticyclonic eddy considered as part of the Subantarctic front. The specific influence of this Agulhas ring on the aloft atmosphere is also presented.


2012 ◽  
Vol 9 (2) ◽  
pp. 1387-1436
Author(s):  
C. Messager ◽  
S. Speich ◽  
E. Key

Abstract. A set of meteorological instruments was added to an oceanographic cruise crossing the Southern Ocean from Cape Town to 57°33' S on board the R/V Marion Dufresne during the summer 2008. The Cape Cauldron, the subtropical, subantarctic, polar and southern Antarctic circumpolar current fronts were successively crossed. The recorded data permitted to derive the exchange of momentum, heat and water vapour at the ocean-atmosphere interface. A set of 38 radiosonde releases complemented the dataset. The marine atmospheric boundary layer characteristics and air-sea interaction when ship crossed the fronts and eddies are discussed. The specific role of the atmospheric synoptic systems advection on the air-sea interaction is highlighted over these regions. The dynamic associated with these systems drive the vertical mixing of the MABL by wind shear effect and/or the vertical thermal mixing. The MABL is stabilized (destabilized) and mixing is inhibited (enhanced) over the warm front sides if meridional wind component is northerly (southerly).


1998 ◽  
Vol 37 (3) ◽  
pp. 308-324 ◽  
Author(s):  
Stephen P. Palm ◽  
Denise Hagan ◽  
Geary Schwemmer ◽  
S. H. Melfi

Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.


Sign in / Sign up

Export Citation Format

Share Document