subantarctic front
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 67 (4) ◽  
pp. 328-347
Author(s):  
K. V. Artamonova ◽  
I. A. Gangnus ◽  
L. A. Dukhova ◽  
V. V. Maslennikov ◽  
N. A. Lavinen

Some hydrochemical characteristics and, first of all, the main nutrients (phosphorus, nitrogen, silicon) can be used as markers for distinguishing different types of water masses and positions of the main fronts of the Southern Ocean. The seasonal and interannual variability of these characteristics also reflects the character of biological processes in the surface layer of the ocean, which is important for assessing biological productivity. The aim of this study was to analyze the main features of the spatial distribution of hydrochemical characteristics in the surface layer in the Atlantic and Indian Ocean sectors of the Southern Ocean between the Subantarctic Front and the shores of Antarctica and assess their seasonal (spring–autumn) and interannual variability for the observation period from 2008 to 2020. We describe the surface nutrient concentrations between Africa and Antarctica along the transects that cross the Subantarctic Front (SAF) in the north, the Polar Frontal Zone (PFS), Polar Front (PF) and Antarctic Zone water in the south. The findings revealed an increase in dissolved oxygen and nutrients towards the south. Nitrates changed values within the SAF from 15 μM to 24 μM, whereas values from 1.2 μM to 1.7 μM were observed for phosphates. Silicate increased considerably within the Polar Front, from 6.6 μM to 20.8 μM. An analysis was carried out of the seasonal and interannual variability of the hydrochemical conditions in the surface layer of the Southern Ocean. The interannual variability of the nutrients was determined by the spatial variability of the main fronts of the Antarctic Circumpolar Current (ACC) and the intensity of the largescale Weddell Gyre (WG). Since 2017, there has been an increase in the meridional transfer of waters: in the Antarctic Summer 2017–2018, there was a spreading of high-nutrient WG waters toward the north, and in the Summer 2019–2020, the low-nutrient waters anomaly was transferred far to the south (up to 60°S).According to the data obtained, the seasonal dynamics of the nutrients in the surface layer of the Southern Ocean was rather weakly expressed. An exception is the high-latitude waters of the Cooperation and Davis Seas, where maximum seasonal variability of the hydrochemical characteristics was observed. The highest rate of nutrient consumption was observed in the coastal area of the Cooperation Sea near the fast ice edge from mid–December to early January and reached 3.2 μM per day for silicate, 1.8 μM per day for nitrates, and 0.12 μM per day for mineral phosphorus. The results of the long-term monitoring of the hydrochemical conditions in the Cooperation Sea made it possible to distinguish conditionally “warm” years with early vegetation (at the end of December) and intensive consumption of nutrients by phytoplankton, and “cold” years, when the formation of high-latitude “oases” in December–January was not observed.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 286
Author(s):  
Marcin Kalarus ◽  
Anna Panasiuk

Appendicularians are one of the most common animals found within zooplankton assemblages. They play a very important role as filter feeders but are, unfortunately, inconsistently reported in the Antarctic literature. The present paper attempts to describe the zonal diversity of appendicularians and the main environmental factors influencing their communities in the Drake Passage. Samples were collected during Antarctic summer in 2009–2010. A total of eight species of larvaceans were identified. Fritillaria borealis was the species found in the highest numbers in almost the entire studied area, and was observed at all sampling stations. The distributions of other taxa were limited to specific hydrological zones and hydrological conditions. F. fraudax and Oikopleura gaussica were typical of the areas between the Polar Front and the Subantarctic Front zones, and their distributions were significantly correlated with temperature and salinity, likely making them good indicator species. The F. fusiformis distribution was strictly related to South American waters. In summary, temperature was the strongest environmental factor influencing the larvacean community structure in the Drake Passage, and we also found that testing environmental factors on larvaceans as a whole group did not give entirely reliable results.


2020 ◽  
Vol 424 ◽  
pp. 106161 ◽  
Author(s):  
Uisdean Nicholson ◽  
Simon Libby ◽  
David R. Tappin ◽  
Dave McCarthy

2019 ◽  
Vol 124 (2) ◽  
pp. 981-1004 ◽  
Author(s):  
Ramkrushnbhai S. Patel ◽  
Helen E. Phillips ◽  
Peter G. Strutton ◽  
Andrew Lenton ◽  
Joan Llort

2018 ◽  
Author(s):  
Thomas Mattern ◽  
Klemens Pütz ◽  
Pablo Garcia-Borboroglu ◽  
Ursula Ellenberg ◽  
David M Houston ◽  
...  

Migratory species often roam vast distances bringing them into contact with diverse conditions and threats that could play significant roles in their population dynamics. This is especially true if long-range travels occur within crucial stages of a species’ annual life-cycle. Crested penguins, for example, usually disperse over several hundreds of kilometres after completing of the energetically demanding breeding season and in preparation for the costly annual moult. A basic understanding of crested penguins’ pre-moult dispersal is therefore paramount in order to be able to assess factors affecting individual survival. The Fiordland penguin / tawaki, the only crested penguin species breeding on the New Zealand mainland, is currently one of the least studied and rarest penguin species in the world. We successfully satellite tracked the pre-moult dispersal of 17 adult Tawaki from a single colony located in the species’ northern breeding distribution. Over the course of 8-10 weeks the penguins travelled up to 2,500 km away from their breeding colony, covering total swimming distances of up to 6,800 km. During outbound travels all penguins headed south-west within a well-defined corridor before branching out towards two general trip destinations. Birds leaving in late November travelled towards the Subtropical Front some 800 km south of Tasmania, whereas penguins that left in December headed further towards the subantarctic front. Using K-select analysis we examined the influence of oceanographic factors on the penguins’ dispersal. Water depth, surface current velocity and sea level anomalies had the greatest influence on penguin movements at the subantarctic Front, while sea surface temperature, chlorophyll a concentration were key for birds travelling to the subtropical front. We discuss our findings in the light of anthropogenic activities (or lack thereof) in the regions visited by the penguins as well as the potential consequences of Tawaki pre-moult dispersal for the species’ breeding distribution on the New Zealand mainland.


2018 ◽  
Author(s):  
Thomas Mattern ◽  
Klemens Pütz ◽  
Pablo Garcia-Borboroglu ◽  
Ursula Ellenberg ◽  
David M Houston ◽  
...  

Migratory species often roam vast distances bringing them into contact with diverse conditions and threats that could play significant roles in their population dynamics. This is especially true if long-range travels occur within crucial stages of a species’ annual life-cycle. Crested penguins, for example, usually disperse over several hundreds of kilometres after completing of the energetically demanding breeding season and in preparation for the costly annual moult. A basic understanding of crested penguins’ pre-moult dispersal is therefore paramount in order to be able to assess factors affecting individual survival. The Fiordland penguin / tawaki, the only crested penguin species breeding on the New Zealand mainland, is currently one of the least studied and rarest penguin species in the world. We successfully satellite tracked the pre-moult dispersal of 17 adult Tawaki from a single colony located in the species’ northern breeding distribution. Over the course of 8-10 weeks the penguins travelled up to 2,500 km away from their breeding colony, covering total swimming distances of up to 6,800 km. During outbound travels all penguins headed south-west within a well-defined corridor before branching out towards two general trip destinations. Birds leaving in late November travelled towards the Subtropical Front some 800 km south of Tasmania, whereas penguins that left in December headed further towards the subantarctic front. Using K-select analysis we examined the influence of oceanographic factors on the penguins’ dispersal. Water depth, surface current velocity and sea level anomalies had the greatest influence on penguin movements at the subantarctic Front, while sea surface temperature, chlorophyll a concentration were key for birds travelling to the subtropical front. We discuss our findings in the light of anthropogenic activities (or lack thereof) in the regions visited by the penguins as well as the potential consequences of Tawaki pre-moult dispersal for the species’ breeding distribution on the New Zealand mainland.


2015 ◽  
Vol 173 ◽  
pp. 114-124 ◽  
Author(s):  
Sylvia G. Sander ◽  
Feng Tian ◽  
Enitan B. Ibisanmi ◽  
Kim I. Currie ◽  
Keith A. Hunter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document