scholarly journals Exploring Hydrologic Model Process Connectivity at the Continental Scale Through an Information Theory Approach

2020 ◽  
Vol 56 (10) ◽  
Author(s):  
Goutam Konapala ◽  
Shih‐Chieh Kao ◽  
Nans Addor
2019 ◽  
Author(s):  
Miguel Equihua Zamora ◽  
Mariana Espinosa ◽  
Carlos Gershenson ◽  
Oliver López-Corona ◽  
Mariana Munguia ◽  
...  

We review the concept of ecosystem resilience in its relation to ecosystem integrity from an information theory approach. We summarize the literature on the subject identifying three main narratives: ecosystem properties that enable them to be more resilient; ecosystem response to perturbations; and complexity. We also include original ideas with theoretical and quantitative developments with application examples. The main contribution is a new way to rethink resilience, that is mathematically formal and easy to evaluate heuristically in real-world applications: ecosystem antifragility. An ecosystem is antifragile if it benefits from environmental variability. Antifragility therefore goes beyond robustness or resilience because while resilient/robust systems are merely perturbation-resistant, antifragile structures not only withstand stress but also benefit from it.


1987 ◽  
Vol 19 (3) ◽  
pp. 385-394 ◽  
Author(s):  
J R Roy

In the use of information theory for the development of forecasting models, two alternative approaches can be used, based either on Shannon entropy or on Kullback information gain. In this paper, a new approach is presented, which combines the usually superior statistical inference powers of the Kullback procedure with the advantages of the availability of calibrated ‘elasticity’ parameters in the Shannon approach. Situations are discussed where the combined approach is preferable to either of the two existing procedures, and the principles are illustrated with the help of a small numerical example.


2011 ◽  
Vol 145 (2) ◽  
pp. 385-409 ◽  
Author(s):  
David M. Rogers ◽  
Thomas L. Beck ◽  
Susan B. Rempe

2015 ◽  
Vol 16 (4) ◽  
pp. 1502-1520 ◽  
Author(s):  
Elizabeth A. Clark ◽  
Justin Sheffield ◽  
Michelle T. H. van Vliet ◽  
Bart Nijssen ◽  
Dennis P. Lettenmaier

Abstract A common term in the continental and oceanic components of the global water cycle is freshwater discharge to the oceans. Many estimates of the annual average global discharge have been made over the past 100 yr with a surprisingly wide range. As more observations have become available and continental-scale land surface model simulations of runoff have improved, these past estimates are cast in a somewhat different light. In this paper, a combination of observations from 839 river gauging stations near the outlets of large river basins is used in combination with simulated runoff fields from two implementations of the Variable Infiltration Capacity land surface model to estimate continental runoff into the world’s oceans from 1950 to 2008. The gauges used account for ~58% of continental areas draining to the ocean worldwide, excluding Greenland and Antarctica. This study estimates that flows to the world’s oceans globally are 44 200 (±2660) km3 yr−1 (9% from Africa, 37% from Eurasia, 30% from South America, 16% from North America, and 8% from Australia–Oceania). These estimates are generally higher than previous estimates, with the largest differences in South America and Australia–Oceania. Given that roughly 42% of ocean-draining continental areas are ungauged, it is not surprising that estimates are sensitive to the land surface and hydrologic model (LSM) used, even with a correction applied to adjust for model bias. The results show that more and better in situ streamflow measurements would be most useful in reducing uncertainties, in particular in the southern tip of South America, the islands of Oceania, and central Africa.


Sign in / Sign up

Export Citation Format

Share Document