scholarly journals How Heavy Rain and Drought Influence California Crustal Strain

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Kate Wheeling

New research using continuous GPS data reveals how multiyear precipitation patterns can amplify the effects of hydrological loading on crustal deformation.

2009 ◽  
Vol 9 (3) ◽  
pp. 663-671 ◽  
Author(s):  
G. Akay ◽  
H. Ozener

Abstract. The western part of North Anatolian Fault (NAF) bifurcates around Mudurnu into two fault segments: northern and southern branch. The latter bifurcates again at west of Pamukova and creates middle strand. This study aimed to analyze crustal movement along the middle strand near Iznik which is considered as inactive fault. We focused on a microgeodetic network called General Command of Mapping-Istanbul Technical University (GCM-ITU) network around this segment. In order to obtain displacement values, five campaigns performed on the network which were used in the study. The displacements of the stations were estimated relative to the fixed stations located at the south of the network. The coordinates of the stations were calculated from the triangulation measurements realized in 1941 and 1963, trilateration measurements in 1981, and GPS campaigns in 2004 and 2007. Then, mean displacements of the network ranging between 7 mm/yr and 18 mm/yr were obtained for these years. In the second part of the study, the GPS data were re-processed by adding three stations from Marmara Continuous GPS Network (MAGNET). Details of MAGNET can be found Ergintav et al. (2002). Estimated displacements were ranging between 3 mm/yr and 13 mm/yr for 2004 and 2007. TUBI station of IGS network was taken as stable.


2016 ◽  
Vol 10 (2) ◽  
Author(s):  
Satrio Muhammad Alif ◽  
Irwan Meilano ◽  
Endra Gunawan ◽  
Joni Efendi

AbstractGPS data in southern Sumatra, Indonesia, indicate crustal deformation associated to subduction zone and inland fault of Great Sumatran Fault (GSF). We analyze these deformation characteristics using campaign and continuous GPS data available in southern Sumatra from 2006–2014. After removing the effect of GSF in southern Sumatra and coseismic displacements of 2007 Bengkulu and 2012 Indian Ocean earthquake, we find that GPS sites experienced northwest-ward direction. These GPS velocities correspond to postseismic deformation of the 2007 Bengkulu earthquake and the 2012 Indian Ocean earthquake. We analyze strain using these velocities, and we find that postseismic strains in southern Sumatra are in the range of 0.8–20 nanostrain.


2021 ◽  
Author(s):  
Figen Eskikoy ◽  
Semih Ergintav ◽  
Uğur Dogan ◽  
Seda Özarpacı ◽  
Alpay Özdemir ◽  
...  

<p>On 2020 October 30, an M<sub>w</sub>6.9 earthquake struck offshore Samos Island. Severe structural damages were observed in Greek Islands and city of Izmir (Turkey). 114 people lost their lives and more than a thousand people were injured in Turkey. The earthquake triggered local tsunami. Significant seismic activity occurred in this region following the earthquake and ~1800 aftershocks (M>1) were recorded by KOERI within the first three days. In this study, we analyze the slip distribution and aftershocks of the 2020 earthquake.</p><p>For the aftershock relocations, the continuous waveforms were collected from NOA, Disaster and Emergency Management Authority of Turkey (AFAD) and KOERI networks. The database   was created based on merged catalogs from AFAD and KOERI. For estimating optimized aftershock location distribution, the P and S phases of the aftershocks are picked manually and relocated with double difference algorithm. In addition, source mechanisms of aftershocks M>4 are obtained from regional body and surface waveforms.</p><p>The surface deformation of the earthquake was obtained from both descending and ascending orbits of the Sentinel-1 A/B and ALOS2 satellites. Since the rupture zone is beneath the Gulf of Kusadası, earthquake related deformation in the interferograms can only be observed on the northern part of the Samos Island. We processed all possible pairs chose the image pairs with the lowest noise level.</p><p>In this study, we used 25 continuous GPS stations which are compiled from TUSAGA-Aktif in Turkey and NOANET in Greece. In addition to continuous GPS data, on 2020 November 1, GPS survey was initiated and the earthquake deformation was measured on 10 GNSS campaign sites (TUTGA), along onshore of Turkey.</p><p>The aim of this study is to estimate the spatial and temporal rupture evolution of the earthquake from geodetic data jointly with near field displacement waveforms. To do so, we use the Bayesian Earthquake Analysis Tool (BEAT).</p><p>As a first step of the study, rectangular source parameters were estimated by using GPS data. In order to estimate the slip distribution, we used both ascending and descending tracks of Sentinel-1 data, ALOS2 and GPS displacements. In our preliminary geodetic data based finite fault model, we used the results of focal mechanism and GPS data inversion solutions for the initial fault plane parameters. The slip distribution results indicate that earthquake rupture is ~35 km long and the maximum slip is ~2 m normal slip along a north dipping fault plane. This EW trending, ~45° north dipping normal faulting system consistent with this tectonic regime in the region. This seismically active area is part of a N-S extensional regime and controlled primarily by normal fault systems.</p><p><strong>Acknowledgements</strong></p><p>This work is supported by the Turkish Directorate of Strategy and Budget under the TAM Project number 2007K12-873.</p>


2016 ◽  
Vol 43 (20) ◽  
pp. 10,710-10,719 ◽  
Author(s):  
Mahesh N. Shrivastava ◽  
Gabriel González ◽  
Marcos Moreno ◽  
Mohamed Chlieh ◽  
Pablo Salazar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document