Evidence of Postseismic Deformation Signal of the 2007 M8.5 Bengkulu Earthquake and the 2012 M8.6 Indian Ocean Earthquake in Southern Sumatra, Indonesia, Based on GPS Data

2016 ◽  
Vol 10 (2) ◽  
Author(s):  
Satrio Muhammad Alif ◽  
Irwan Meilano ◽  
Endra Gunawan ◽  
Joni Efendi

AbstractGPS data in southern Sumatra, Indonesia, indicate crustal deformation associated to subduction zone and inland fault of Great Sumatran Fault (GSF). We analyze these deformation characteristics using campaign and continuous GPS data available in southern Sumatra from 2006–2014. After removing the effect of GSF in southern Sumatra and coseismic displacements of 2007 Bengkulu and 2012 Indian Ocean earthquake, we find that GPS sites experienced northwest-ward direction. These GPS velocities correspond to postseismic deformation of the 2007 Bengkulu earthquake and the 2012 Indian Ocean earthquake. We analyze strain using these velocities, and we find that postseismic strains in southern Sumatra are in the range of 0.8–20 nanostrain.

Author(s):  
Hilmiyati Ulinnuha ◽  
Aris Sunantyo ◽  
Nurrohmat Widjajanti

Mentawai Segment is located in Mentawai Islands, Sumatra, Indonesia. This segment is a subduction zone between Indo-Australian plate and Eurasian plate. This subduction zone can lead to high potential of tectonic earthquake in Mentawai Segment. The high potential of tectonic earthquake has negative impact for the community, so it is necessary to monitor the risk of tectonic earthquake in Mentawai Segment. This monitoring can be done by using GPS data of monitoring station that spread in Mentawai Segment. Therefore, this research aims to analyze the effect of tectonic earthquake on the coordinate change of Mentawai Segment, so that it can reduce the risk of negative impact of tectonic earthquake in Mentawai Segment. This research use observation data of 10 continuous GPS monitoring station (Sumatran GPS Data Array / SuGAr) in Mentawai Segment. Day of observation data was day of year (doy) at the time of tectonic earthquake occurence on July 10, 2013. Data processing used GAMIT / GLOBK software. The results of this research indicate that the tectonic earthquake (July 10, 2013) affected coordinates changes of the SuGAr station significantly two hours after the tectonic earthquake occurred.


Author(s):  
W. A. W. Aris ◽  
T. A. Musa ◽  
K. Omar

The Mw 8.5 Bengkulu earthquake of 30 September 2007 and the Mw8.6 28 March 2005 are considered amongst large earthquake ever recorded in Southeast Asia. The impact into tectonic deformation was recorded by a network of Global Positioning System (GPS) Continuously Operating Reference Station (CORS) within southern of Sumatra and west-coast of Peninsular Malaysia. The GPS data from the GPS CORS network has been deployed to investigate the characteristic of postseismic deformation due to the earthquakes. Analytical logarithmic and exponential function was applied to investigate the deformation decay period of postseismic deformation. This investigation provides a preliminary insight into postseismic cycle along the Sumatra subduction zone in particular and on the dynamics Peninsular Malaysia in general.


2020 ◽  
Vol 3 (1) ◽  
pp. 13
Author(s):  
Hilmiyati Ulinnuha ◽  
Aris Sunantyo ◽  
Nurrohmat Widjajanti

Mentawai Segment is located in Mentawai Islands, Sumatra, Indonesia. This segment is a subduction zone between Indo-Australian plate and Eurasian plate. This subduction zone can lead to high potential of tectonic earthquake in Mentawai Segment. The high potential of tectonic earthquake has negative impact for the community, so it is necessary to monitor the risk of tectonic earthquake in Mentawai Segment. This monitoring can be done by using GPS data of monitoring station that spread in Mentawai Segment. Therefore, this research aims to analyze the effect of tectonic earthquake on the coordinate change of Mentawai Segment, so that it can reduce the risk of negative impact of tectonic earthquake in Mentawai Segment. This research use observation data of 10 continuous GPS monitoring station (Sumatran GPS Data Array / SuGAr) in Mentawai Segment. Day of observation data was day of year (doy) at the time of tectonic earthquake occurence on July 10, 2013. Data processing used GAMIT / GLOBK software. The results of this research indicate that the tectonic earthquake (July 10, 2013) affected coordinates changes of the SuGAr station significantly two hours after the tectonic earthquake occurred.


Author(s):  
W. A. W. Aris ◽  
T. A. Musa ◽  
H. Lee ◽  
Y. Choi ◽  
H. Yoon

This paper describes utilization of GPS data in Korea Peninsula and IEODO ocean research station for investigation of postseismic deformation characteristic after the 2011 Tohoku-oki Mw9.0 Earthquake. Analytical logarithmic and exponential functions were used to evaluate the postseismic deformation parameters. The results found that the data in Korea Peninsula and IEODO during periods of mid-2011 – mid-2014 are fit better using logarithmic function with deformation decay at 134.5 ±0.1 days than using the exponential function. The result also clearly indicates that further investigation into postseismic deformation over longer data span should be taken into account to explain tectonic deformation over the region.


2021 ◽  
Author(s):  
Marco Meschis ◽  
Susanna Zerbini ◽  
Giovanni Lattanzi ◽  
Miriana Di Donato ◽  
Silvia Castellaro

<p>Geologic studies of preserved stairs-like uplifted marine terraces and continuous GPS data collected in subduction zones provide a unique opportunity to investigate, on different time scales, crustal deformation resulting from upper‐plate extension. The West Crati Fault in Calabria, southern Italy, is a normal fault located within the seismically extending upper plate above the Ionian subduction zone. It is of interest because a thorough comparison of the extension rates inferred from geologic and GPS data has not yet been performed. This E-dipping fault lies in an area where a few historical damaging earthquakes occurred, examples are those in 1184 (M 6.7) and 1638 (M 6.7). Fault slip-rates and earthquake recurrence intervals for the West Crati fault are still subject of debate. We investigated raised marine terraces along the strike of the fault, on its footwall over its tips, located above the Ionian subduction zone, to derive refined uplift rates and study the role that known extensional faults contribute to observed coastal uplift. We also estimated short-term vertical and horizontal movements on the hangingwall of this fault by analyzing the data of 7 permanent GPS stations located along the N-S oriented strike of this fault.</p><p>Our preliminary results demonstrate that (i) GIS-based elevations of Middle to Late Pleistocene marine terraces, as well as temporally constant uplift rates, vary along the strike of this fault, mapped on its footwall; (ii) rates of short-term vertical movements vary along the strike of this fault on its hangingwall. This confirms active deformation, on different time scales, along the E-dipping West Crati Fault, suggesting that the fault slip-rate governing seismic hazard has also been constant through time. Our preliminary results show the importance of mapping crustal deformation within the upper plate above subduction zones to avoid unreliable interpretations concerning the mechanism responsible for regional uplift.</p>


2016 ◽  
Vol 64 (6) ◽  
pp. 2136-2150 ◽  
Author(s):  
Endra Gunawan ◽  
Putra Maulida ◽  
Irwan Meilano ◽  
Masyhur Irsyam ◽  
Joni Efendi

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Kate Wheeling

New research using continuous GPS data reveals how multiyear precipitation patterns can amplify the effects of hydrological loading on crustal deformation.


Sign in / Sign up

Export Citation Format

Share Document