scholarly journals Dissecting anvil cloud response to sea surface warming

Author(s):  
Hassan Beydoun ◽  
Peter M. Caldwell ◽  
Walter M. Hannah ◽  
Aaron S. Donahue
2019 ◽  
Vol 175 ◽  
pp. 68-80 ◽  
Author(s):  
Jae-Hong Moon ◽  
Taekyun Kim ◽  
Young Baek Son ◽  
Ji-Seok Hong ◽  
Joon-Ho Lee ◽  
...  

2014 ◽  
Vol 27 (24) ◽  
pp. 9323-9336 ◽  
Author(s):  
Paul W. Staten ◽  
Thomas Reichler ◽  
Jian Lu

Abstract Tropospheric circulation shifts have strong potential to impact surface climate. However, the magnitude of these shifts in a changing climate and the attending regional hydrological changes are difficult to project. Part of this difficulty arises from the lack of understanding of the physical mechanisms behind the circulation shifts themselves. To better delineate circulation shifts and their respective causes the circulation response is decomposed into 1) the “direct” response to radiative forcings themselves and 2) the “indirect” response to changing sea surface temperatures. Using ensembles of 90-day climate model simulations with immediate switch-on forcings, including perturbed greenhouse gas concentrations, stratospheric ozone concentrations, and sea surface temperatures, this paper documents the direct and indirect transient responses of the zonal-mean general circulation, and investigates the roles of previously proposed mechanisms in shifting the midlatitude jet. It is found that both the direct and indirect wind responses often begin in the lower stratosphere. Changes in midlatitude eddies are ubiquitous and synchronous with the midlatitude zonal wind response. Shifts in the critical latitude of wave absorption on either flank of the jet are not indicted as primary factors for the poleward-shifting jet, although some evidence for increasing equatorward wave reflection over the Southern Hemisphere in response to sea surface warming is seen. Mechanisms for the Northern Hemisphere jet shift are less clear.


2020 ◽  
Vol 54 (3) ◽  
Author(s):  
G. C. dos Santos Oliveira ◽  
G. Corso ◽  
D. M. Medeiros ◽  
I. De Mendonça Silva ◽  
A. J. B. Santos ◽  
...  
Keyword(s):  

2016 ◽  
Vol 29 (4) ◽  
pp. 1461-1476 ◽  
Author(s):  
Pradipta Parhi ◽  
Alessandra Giannini ◽  
Pierre Gentine ◽  
Upmanu Lall

Abstract The evolution of El Niño can be separated into two phases—namely, growth and mature—depending on whether the regional sea surface temperature has adjusted to the tropospheric warming in the remote tropics (tropical regions away from the central and eastern tropical Pacific Ocean). The western Sahel’s main rainy season (July–September) is shown to be affected by the growth phase of El Niño through (i) a lack of neighboring North Atlantic sea surface warming, (ii) an absence of an atmospheric column water vapor anomaly over the North Atlantic and western Sahel, and (iii) higher atmospheric vertical stability over the western Sahel, resulting in the suppression of mean seasonal rainfall as well as number of wet days. In contrast, the short rainy season (October–December) of tropical eastern Africa is impacted by the mature phase of El Niño through (i) neighboring Indian Ocean sea surface warming, (ii) positive column water vapor anomalies over the Indian Ocean and tropical eastern Africa, and (iii) higher atmospheric vertical instability over tropical eastern Africa, leading to an increase in the mean seasonal rainfall as well as in the number of wet days. While the modulation of the frequency of wet days and seasonal mean accumulation is statistically significant, daily rainfall intensity (for days with rainfall > 1 mm day−1), whether mean, median, or extreme, does not show a significant response in either region. Hence, the variability in seasonal mean rainfall that can be attributed to the El Niño–Southern Oscillation phenomenon in both regions is likely due to changes in the frequency of rainfall.


2003 ◽  
Vol 16 (14) ◽  
pp. 2419-2423 ◽  
Author(s):  
Fanglin Yang ◽  
Arun Kumar ◽  
Michael E. Schlesinger ◽  
Wanqiu Wang

Abstract The fact that the surface and tropospheric temperatures increase with increasing CO2 has been well documented by numerical model simulations; however, less agreement is found for the changes in the intensity of precipitation and the hydrological cycle. Here, it is demonstrated that while both the radiative heating by increasing CO2 and the resulting higher sea surface temperatures contribute to warm the atmosphere, they act against each other in changing the hydrological cycle. As a consequence, in a warmer climate forced by increasing CO2 the intensity of the hydrological cycle can be either more or less intense depending upon the degree of surface warming.


Sign in / Sign up

Export Citation Format

Share Document