scholarly journals Machine‐Learning based Reconstructions of Past Regional Sea Level Variability from Proxy Data

Author(s):  
Cristina Radin ◽  
Veronica Nieves
2015 ◽  
Vol 111 ◽  
pp. 95-107 ◽  
Author(s):  
Yongcun Cheng ◽  
Hans-Peter Plag ◽  
Benjamin D. Hamlington ◽  
Qing Xu ◽  
Yijun He

2015 ◽  
Vol 137 ◽  
pp. 173-195 ◽  
Author(s):  
Gaël Forget ◽  
Rui M. Ponte

2017 ◽  
Vol 30 (14) ◽  
pp. 5585-5595 ◽  
Author(s):  
Yoshi N. Sasaki ◽  
Ryosuke Washizu ◽  
Tamaki Yasuda ◽  
Shoshiro Minobe

Sea level variability around Japan from 1906 to 2010 is examined using a regional ocean model, along with observational data and the CMIP5 historical simulations. The regional model reproduces observed interdecadal sea level variability, for example, high sea level around 1950, low sea level in the 1970s, and sea level rise during the most recent three decades, along the Japanese coast. Sensitivity runs reveal that the high sea level around 1950 was induced by the wind stress curl changes over the North Pacific, characterized by a weakening of the Aleutian low. In contrast, the recent sea level rise is primarily caused by heat and freshwater flux forcings. That the wind-induced sea level rise along the Japanese coast around 1950 is as large as the recent sea level rise highlights the importance of natural variability in understanding regional sea level change on interdecadal time scales.


Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1473-1487
Author(s):  
Patrick Wagner ◽  
Claus W. Böning

Abstract. Strong regional sea-level trends, mainly related to basin-wide wind stress anomalies, have been observed in the western tropical Pacific over the last 3 decades. Analyses of regional sea level in the densely populated regions of the neighbouring Australasian Mediterranean Sea (AMS; also called tropical Asian seas) are hindered by its complex topography and respective studies are sparse. We used a series of global eddy-permitting ocean models, including a high-resolution configuration that resolves the AMS with 120∘ horizontal resolution, forced by a comprehensive atmospheric forcing product over 1958–2016 to characterize the patterns and magnitude of decadal sea-level variability in the AMS. The nature of this variability is elucidated further by sensitivity experiments with interannual variability restricted to either the momentum or buoyancy fluxes, building on an experiment employing a repeated-year forcing without interannual variability in all forcing components. Our results suggest that decadal fluctuations of the El Niño–Southern Oscillation (ENSO) account for over 80 % of the variability in all deep basins of the region, except for the central South China Sea (SCS). Changes related to the Pacific Decadal Oscillation (PDO) are most pronounced in the shallow Arafura and Timor seas and in the central SCS. On average, buoyancy fluxes account for less than 10 % of decadal SSH variability, but this ratio is highly variable over time and can reach values of up to 50 %. In particular, our results suggest that buoyancy flux forcing amplifies the dominant wind-stress-driven anomalies related to ENSO cycles. Intrinsic variability is mostly negligible except in the SCS, where it accounts for 25 % of the total decadal SSH variability.


2022 ◽  
Author(s):  
Abhisek Chatterjee ◽  
Sajidh C K

Abstract The regional sea level variability and its projection amidst the global sea level rise is one of the major concerns for coastal communities. The dynamic sea level plays a major role in the observed spatial deviations in regional sea level rise from the global mean. The present study evaluates 27 climate model simulations from the sixth phase of the coupled model intercomparison project (CMIP6) for their representation of the historical mean states, variability and future projections for the Indian Ocean. Most models reproduce the observed mean state of the dynamic sea level realistically, however consistent positive bias is evident across the latitudinal range of the Indian Ocean. The strongest sea level bias is seen along the Antarctic Circumpolar Current (ACC) regime owing to the stronger than observed south Indian Ocean westerlies and its equatorward bias. Further, this equatorward shift of the wind field resulted in stronger positive windstress curl across the southeasterly trade winds in the southern tropical basin and easterly wind bias along the equatorial waveguide. These anomalous easterly equatorial winds cause upwelling in the eastern part of the basin and keeps the thermocline shallower in the model than observed, resulted in enhanced variability for the dipole zonal mode or Indian Ocean dipole in the tropics. In the north Indian Ocean, the summer monsoon winds are weak in the model causing weaker upwelling and positive sea level bias along the western Arabian Sea. The high-resolution models compare better in simulating the sea level variability, particularly in the eddy dominated regions like the ACC regime in interannual timescale. However, these improved variabilities do not necessarily produce a better mean state likely due to the enhanced mixing driven by parametrizations set in these high-resolution models. Finally, the overall pattern of the projected dynamic sea level rise is found to be similar for the mid (SSP2-4.5) and high-end (SSP5-8.5) scenarios, except that the magnitude is higher under the high emission situation. Notably, the projected dynamic sea level change is found to be milder when only the best performing models are used compared to the full ensemble.


2017 ◽  
Vol 122 (11) ◽  
pp. 9068-9091 ◽  
Author(s):  
M. Carson ◽  
A. Köhl ◽  
D. Stammer ◽  
B. Meyssignac ◽  
J. Church ◽  
...  

2014 ◽  
Vol 27 (6) ◽  
pp. 2417-2426 ◽  
Author(s):  
Armin Köhl

Abstract On interannual time scales, regional sea level variability is largely determined by changes in the steric component. The relation between the thermosteric and halosteric components is studied by separating the components into contributions from the mixed layer and, below the mixed layer, into the part that is related to isopycnal motion and that contributes to the steric sea level and the inactive part related to changes of spiciness. The decomposition provides a simple diagnostic to detect and understand physical mechanisms leading to regional sea level changes. In most areas of the world’s oceans, steric sea level variability is dominated by the contribution from isopycnal motion to the thermosteric sea level while halosteric variability relates more to spiciness. Because of the salinity minimum at middepth, different spatial salinity gradients above and below the minimum lead to opposing contributions and thus to a small contribution from isopycnal motion to the halosteric sea level. In nonpolar regions, both active components oppose each other, rendering the thermosteric variability larger than the steric variability. In the Arctic, the variability of both components is governed by spiciness in the Eurasian Basin and isopycnal motion in the Amerasian Basin.


2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Shiva Shankar Manche ◽  
Rabindra K. Nayak ◽  
Prakash Chandra Mohanty ◽  
M. V. R. Shesasai ◽  
V. K. Dadhwal

Sign in / Sign up

Export Citation Format

Share Document