scholarly journals Atmospheric Rivers Bring More Frequent and Intense Extreme Rainfall Events over East Asia under Global Warming

Author(s):  
Y. Kamae ◽  
Y. Imada ◽  
H. Kawase ◽  
W. Mei
2018 ◽  
Author(s):  
Ruksana H. Rimi ◽  
Karsten Haustein ◽  
Emily J. Barbour ◽  
Sarah N. Sparrow ◽  
Sihan Li ◽  
...  

Abstract. Anthropogenic climate change is likely to increase the frequency of extreme weather events in future. Previous studies have robustly shown how and where climate change has already changed the risks of weather extremes. However, developing countries have been somewhat underrepresented in these studies, despite high vulnerability and limited capacities to adapt. How additional global warming would affect the future risks of extreme rainfall events in Bangladesh needs to be addressed to limit adverse impacts. Our study focuses on understanding and quantifying the relative risks of seasonal extreme rainfall events in Bangladesh under the Paris Agreement temperature goals of 1.5 °C and 2 °C warming above pre-industrial levels. In particular, we investigate the influence of anthropogenic aerosols on these risks given their likely future reduction and resulting amplification of global warming. Using large ensemble regional climate model simulations from weather@home under different forcing scenarios, we compare the risks of rainfall events under pre-industrial (natural), current (actual), 1.5 °C, and 2.0 °C warmer and greenhouse gas only (anthropogenic aerosols removed) conditions. We find that the risk of a 1 in 100 year rainfall event has already increased significantly compared with pre-industrial levels across parts of Bangladesh, with additional increases likely for 1.5 and 2.0 degree warming (of up to 5.5 times higher, with an uncertainty range of 3.5 to 7.8 times). Impacts were observed during both the pre-monsoon and monsoon periods, but were spatially variable across the country in terms of the level of impact. Results also show that reduction in anthropogenic aerosols plays an important role in determining the overall future climate change impacts; by exacerbating the effects of GHG induced global warming and thereby increasing the rainfall intensity. We highlight that the net aerosol effect varies from region to region within Bangladesh, which leads to different outcomes of aerosol reduction on extreme rainfall statistics, and must therefore be considered in future risk assessments. Whilst there is a substantial reduction in the impacts resulting from 1.5 °C compared with 2 °C warming, the difference is spatially and temporally variable, specifically with respect to seasonal extreme rainfall events.


2021 ◽  
Vol 102 (1) ◽  
pp. E1-E19 ◽  
Author(s):  
Bin Wang ◽  
Michela Biasutti ◽  
Michael P. Byrne ◽  
Christopher Castro ◽  
Chih-Pei Chang ◽  
...  

AbstractMonsoon rainfall has profound economic and societal impacts for more than two-thirds of the global population. Here we provide a review on past monsoon changes and their primary drivers, the projected future changes, and key physical processes, and discuss challenges of the present and future modeling and outlooks. Continued global warming and urbanization over the past century has already caused a significant rise in the intensity and frequency of extreme rainfall events in all monsoon regions (high confidence). Observed changes in the mean monsoon rainfall vary by region with significant decadal variations. Northern Hemisphere land monsoon rainfall as a whole declined from 1950 to 1980 and rebounded after the 1980s, due to the competing influences of internal climate variability and radiative forcing from greenhouse gases and aerosol forcing (high confidence); however, it remains a challenge to quantify their relative contributions. The CMIP6 models simulate better global monsoon intensity and precipitation over CMIP5 models, but common biases and large intermodal spreads persist. Nevertheless, there is high confidence that the frequency and intensity of monsoon extreme rainfall events will increase, alongside an increasing risk of drought over some regions. Also, land monsoon rainfall will increase in South Asia and East Asia (high confidence) and northern Africa (medium confidence), decrease in North America, and be unchanged in the Southern Hemisphere. Over the Asian–Australian monsoon region, the rainfall variability is projected to increase on daily to decadal scales. The rainy season will likely be lengthened in the Northern Hemisphere due to late retreat (especially over East Asia), but shortened in the Southern Hemisphere due to delayed onset.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingxiang Shu ◽  
Asaad Y. Shamseldin ◽  
Evan Weller

AbstractThis study quantifies the impact of atmospheric rivers (ARs) on rainfall in New Zealand. Using an automated AR detection algorithm, daily rainfall records from 654 rain gauges, and various atmospheric reanalysis datasets, we investigate the climatology of ARs, the characteristics of landfalling ARs, the contribution of ARs to annual and seasonal rainfall totals, and extreme rainfall events between 1979 and 2018 across the country. Results indicate that these filamentary synoptic features play an essential role in regional water resources and are responsible for many extreme rainfall events on the western side of mountainous areas and northern New Zealand. In these regions, depending on the season, 40–86% of the rainfall totals and 50–98% of extreme rainfall events are shown to be associated with ARs, with the largest contributions predominantly occurring during the austral summer. Furthermore, the median daily rainfall associated with ARs is 2–3 times than that associated with other storms. The results of this study extend the knowledge on the critical roles of ARs on hydrology and highlight the need for further investigation on the landfalling AR physical processes in relation to global circulation features and AR sources, and hydrological hazards caused by ARs in New Zealand.


2021 ◽  
Vol 3 ◽  
Author(s):  
Jose A. Marengo ◽  
Pedro I. Camarinha ◽  
Lincoln M. Alves ◽  
Fabio Diniz ◽  
Richard A. Betts

With the inclusion of demographic characteristics of the population living in vulnerable areas, a combination of empirical and climate models was used to project changes to climate and in hydro-geo-meteorological disasters in Brazil. This study investigated the effect of extreme rainfall changes and the risk of floods and landslides under 1.5, 2.0, and 4.0°C global warming levels (GWLs). Projections from a large ensemble of pre-CMIP6 models and different warming levels show a remarkable change in heavy precipitation. As a result, with increasing warming this enhances the risk of landslides and flash floods in the context of climate change. Comparisons of vulnerability and change in potential impacts of landslides and floods show that three regions, highly densely populated areas, are the most exposed to landslides and floods. The Southern and Southeastern of Brazil stand out, including metropolitan regions with high economic development and densely populated, which may be those where disasters can intensify both in terms of frequency and magnitude. The eastern portion of the Northeast is also signaled as one of the affected regions due to its high vulnerability and exposure since the present period, although the projections of future climate do not allow conclusive results regarding the intensification of extreme rainfall events in scenarios below 4°C. The main metropolitan regions and tourist resorts, and key infrastructure in Brazil are located in those regions. This study highlights the importance of environmental policies to protect human lives and minimize financial losses in the coming decades and reinforces the need for decision-making, monitoring, and early warning systems to better manage disasters as part of disaster risk reduction risk management.


Weather ◽  
2020 ◽  
Author(s):  
Jean‐Jacques M. Mboka ◽  
Sandrine B. Kouna ◽  
Steven Chouto ◽  
Flore K. Djuidje ◽  
Estelle B. Nguy ◽  
...  

2019 ◽  
Vol 40 (6) ◽  
pp. 3118-3141 ◽  
Author(s):  
Babatunde J. Abiodun ◽  
Tlakale O. Mogebisa ◽  
Brilliant Petja ◽  
Abayomi A. Abatan ◽  
Takong R. Roland

2021 ◽  
Author(s):  
Abdou Khouakhi ◽  
Fatima Driouech ◽  
Louise Slater ◽  
Toby Waine ◽  
Omar Chafki ◽  
...  

<p>Atmospheric rivers (ARs) are long, narrow, and transient corridors of enhanced water vapour content in the lower troposphere, often connected to the warm sector of extratropical cyclones and associated with strong low-level winds. These features play a major role in the global water cycle and drive weather extremes in many parts of the world. Here, we investigated the characteristics of landfilling ARs, including their frequency and magnitude over Morocco for the period 1979–2020. We used ECMWF ERA5 reanalysis data to detect and track landfilling ARs, and compared different gridded precipitation products (i.e. Integrated Multi-satellite Retrievals for GPM (IMERG), ERA5 Land, and CHIRPS) with a set of gauging stations datasets distributed across Morocco. We assessed AR association with rainfall at the annual and seasonal scales, as well as for extreme rainfall events, in different datasets. Preliminary results indicate that around 20 ARs/year make landfall or have their centroids within 200 km from Morocco. AR occurrence varies spatially and seasonally with highest occurrences in winter (DJF) across northern regions and spring (MAM) in the southern part of country. Rainfall events of up to 250 mm/year are driven by ARs; with the southernmost and driest regions receiving most of their rainfall from ARs. This paper will provide an overview of extreme rainfall and wind associated with ARs across Morocco.</p>


2021 ◽  
Author(s):  
Assad Shamseldin ◽  
Evan Weller ◽  
Jingxiang Shu

Abstract This study quantifies the impact of atmospheric rivers (ARs) on rainfall in New Zealand. Using daily rainfall records from 654 rain gauges and the ERA-Interim and ERA-5 reanalysis, we investigate the contribution of ARs to the annual and seasonal rainfall totals and extreme rainfall events between 1979–2018 across the country. Results indicate that these filamentary synoptic features play an essential role in regional water resources and are responsible for many extreme rainfall events on the western side of mountainous areas and northern New Zealand. Depending on the season in these areas, 40–86% of the rainfall totals and 50–98% of extreme rainfall events are shown to be associated with ARs, with the largest contributions predominantly occurring during the summer. Furthermore, the median daily rainfall associated with ARs is 2–3 times that associated with other storms. The results of this study extend the knowledge of the critical roles of ARs on hydrology and highlight the need for further investigation of the hydrological hazards caused by ARs in New Zealand.


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


Sign in / Sign up

Export Citation Format

Share Document