scholarly journals Extreme Rainfall and Hydro-Geo-Meteorological Disaster Risk in 1.5, 2.0, and 4.0°C Global Warming Scenarios: An Analysis for Brazil

2021 ◽  
Vol 3 ◽  
Author(s):  
Jose A. Marengo ◽  
Pedro I. Camarinha ◽  
Lincoln M. Alves ◽  
Fabio Diniz ◽  
Richard A. Betts

With the inclusion of demographic characteristics of the population living in vulnerable areas, a combination of empirical and climate models was used to project changes to climate and in hydro-geo-meteorological disasters in Brazil. This study investigated the effect of extreme rainfall changes and the risk of floods and landslides under 1.5, 2.0, and 4.0°C global warming levels (GWLs). Projections from a large ensemble of pre-CMIP6 models and different warming levels show a remarkable change in heavy precipitation. As a result, with increasing warming this enhances the risk of landslides and flash floods in the context of climate change. Comparisons of vulnerability and change in potential impacts of landslides and floods show that three regions, highly densely populated areas, are the most exposed to landslides and floods. The Southern and Southeastern of Brazil stand out, including metropolitan regions with high economic development and densely populated, which may be those where disasters can intensify both in terms of frequency and magnitude. The eastern portion of the Northeast is also signaled as one of the affected regions due to its high vulnerability and exposure since the present period, although the projections of future climate do not allow conclusive results regarding the intensification of extreme rainfall events in scenarios below 4°C. The main metropolitan regions and tourist resorts, and key infrastructure in Brazil are located in those regions. This study highlights the importance of environmental policies to protect human lives and minimize financial losses in the coming decades and reinforces the need for decision-making, monitoring, and early warning systems to better manage disasters as part of disaster risk reduction risk management.

2008 ◽  
Vol 3 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Masaomi Nakamura ◽  
◽  
Sachie Kaneda ◽  
Yasutaka Wakazuki ◽  
Chiashi Muroi ◽  
...  

Under the Kyosei-4 Project, unprecedented high resolution global and regional climate models were developed on the Earth Simulator to investigate the effect of global warming on tropical cyclones, baiu frontal rainfall systems, and heavy rainfall events that could not be resolved using conventional climate models.For the regional climate model, a nonhydrostatic model (NHM) with a horizontal resolution of 5 km was developed to be used in the simulation of heavy rainfall during the baiu season in Japan. Simulations in June and July were executed for 10 years in present and future global warming climates. It was found that, due to global warming, mean rainfall is projected to increase except in eastern and northern Japan, the frequency of heavy rainfall events would increase and its increment rate become higher for heavier rainfall, and return values for extreme rainfall would grow.Experiments using an NHM with a horizontal resolution of 1 km were conducted to study the effects of resolution. Compared to 5 km resolution, it expresses the organization of rainfall systems causing heavy rainfall and the appearance-frequency distribution of rainfall for variable intensities more realistically.


2018 ◽  
Author(s):  
Ruksana H. Rimi ◽  
Karsten Haustein ◽  
Emily J. Barbour ◽  
Sarah N. Sparrow ◽  
Sihan Li ◽  
...  

Abstract. Anthropogenic climate change is likely to increase the frequency of extreme weather events in future. Previous studies have robustly shown how and where climate change has already changed the risks of weather extremes. However, developing countries have been somewhat underrepresented in these studies, despite high vulnerability and limited capacities to adapt. How additional global warming would affect the future risks of extreme rainfall events in Bangladesh needs to be addressed to limit adverse impacts. Our study focuses on understanding and quantifying the relative risks of seasonal extreme rainfall events in Bangladesh under the Paris Agreement temperature goals of 1.5 °C and 2 °C warming above pre-industrial levels. In particular, we investigate the influence of anthropogenic aerosols on these risks given their likely future reduction and resulting amplification of global warming. Using large ensemble regional climate model simulations from weather@home under different forcing scenarios, we compare the risks of rainfall events under pre-industrial (natural), current (actual), 1.5 °C, and 2.0 °C warmer and greenhouse gas only (anthropogenic aerosols removed) conditions. We find that the risk of a 1 in 100 year rainfall event has already increased significantly compared with pre-industrial levels across parts of Bangladesh, with additional increases likely for 1.5 and 2.0 degree warming (of up to 5.5 times higher, with an uncertainty range of 3.5 to 7.8 times). Impacts were observed during both the pre-monsoon and monsoon periods, but were spatially variable across the country in terms of the level of impact. Results also show that reduction in anthropogenic aerosols plays an important role in determining the overall future climate change impacts; by exacerbating the effects of GHG induced global warming and thereby increasing the rainfall intensity. We highlight that the net aerosol effect varies from region to region within Bangladesh, which leads to different outcomes of aerosol reduction on extreme rainfall statistics, and must therefore be considered in future risk assessments. Whilst there is a substantial reduction in the impacts resulting from 1.5 °C compared with 2 °C warming, the difference is spatially and temporally variable, specifically with respect to seasonal extreme rainfall events.


2021 ◽  
Author(s):  
Matias Ezequiel Olmo ◽  
Maria Laura Bettolli

<p>Southern South America (SSA) is a wide populated region exposed to extreme rainfall events, which are recognised as some of the major threats in a warming climate. These events produce large impacts on socio-economic activities, energy demand and health systems. Hence, studying this phenomena requires high-quality and high-resolution observational data and model simulations. In this work, the main features of daily extreme precipitation and circulation types over SSA were evaluated using a 4-model set of CORDEX regional climate models (RCMs) driven by ERA-Interim during 1980-2010: RCA4 and WRF from CORDEX Phase 1 and RegCM4v7 and REMO2015 from the brand-new CORDEX-CORE simulations. Observational uncertainty was assessed by comparing model outputs with multiple observational datasets (rain gauges, CHIRPS, CPC and MSWEP). </p><p>The inter-comparison of extreme events, characterized in terms of their intensity, frequency and spatial coverage, varied across SSA exhibiting large differences among observational datasets and RCMs, pointing out the current observational uncertainty when evaluating precipitation extremes, particularly at a daily scale. The spread between observational datasets was smaller than for the RCMs. Most of the RCMs successfully captured the spatial pattern of extreme rainfall across SSA, reproducing the maximum intensities in southeastern South America (SESA) and central and southern Chile during the austral warm (October to March) and cold (April to September) seasons, respectively. However, they often presented overestimations over central and southern Chile, and more variable results in SESA. RegCM4 and WRF seemed to well represent the maximum precipitation amounts over SESA, while REMO showed strong overestimations and RCA4 had more difficulties in representing the spatial distribution of heavy rainfall intensities. Focusing over SESA, differences were detected in the timing and location of extremes (including the areal coverage) among both observational datasets and RCMs, which poses a particular challenge when performing impact studies in the region. Thus, stressing that the use of multiple datasets is of key importance when carrying out regional climate studies and model evaluations, particularly for extremes. </p><p>The synoptic environment was described by a classification of circulation types (CTs) using Self-Organizing Maps (SOM) considering geopotential height anomalies at 500 hPa (Z500). Specific CTs were identified as they significantly enhanced the occurrence of extreme rainfall events in sectorized areas of SESA. In particular, a dipolar structure of Z500 anomalies that produced a marked trough at the mid-level atmosphere, usually located east of the Andes, significantly favoured the occurrence of extreme precipitation events in the warm season. The RCMs were able to adequately reproduce the SOM frequencies, although simplifying the predominant CTs into a reduced number of configurations. They appropriately reproduced the observed extreme precipitation frequencies conditioned by the CTs and their atmospheric configurations, but exhibiting some limitations in the location and intensity of the resulting precipitation systems.</p><p>In this sense, continuous evaluations of observational datasets and model simulations become necessary for a better understanding of the physical mechanisms behind extreme precipitation over the region, as well as for its past and future changes in a climate change scenario.</p>


Weather ◽  
2020 ◽  
Author(s):  
Jean‐Jacques M. Mboka ◽  
Sandrine B. Kouna ◽  
Steven Chouto ◽  
Flore K. Djuidje ◽  
Estelle B. Nguy ◽  
...  

2019 ◽  
Vol 40 (6) ◽  
pp. 3118-3141 ◽  
Author(s):  
Babatunde J. Abiodun ◽  
Tlakale O. Mogebisa ◽  
Brilliant Petja ◽  
Abayomi A. Abatan ◽  
Takong R. Roland

2021 ◽  
Author(s):  
Felix Strnad ◽  
Bedartha Goswami

<p>A defining feature of the Earth’s climate is the annual variation of heavy precipitation and convergent wind circulation in the tropics and subtropics. This dominant mode of hemispherically distributed rainfall is often termed the 'global monsoon', comprising of regional monsoon systems on every continent. Monsoon regions are defined using<strong> </strong>annual precipitation differences and average seasonality rather than by the dynamical similarities of rainfall dynamics<strong>; </strong>they thus<strong> </strong>fail to (i) consider global patterns of extreme rainfall events (EREs), and (ii) take into account spatio-temporal similarities in timing and intensity of monsoonal circulation.</p><p>In this work, we investigate the dynamics of the Global Monsoon using the framework of complex networks derived from extreme rainfall events. In particular, we use time-delayed event synchronization applied to the GPCP rainfall dataset to first extract a network of global ERE teleconnections. We then identify regions with similar ERE patterns by applying<strong> </strong>on the global ERE network a Bayesian hierarchical clustering approach based on the stochastic block model.</p><p>Our work presents evidence to place different monsoon regions in a global context and therefore to describe them as a unified system with common underlying dynamics: Besides known teleconnections, our method captures various differently resolved representations of the global weather system. These range from a description containing two clusters separated by the hemispheric equator to a precise representation of distinguishable but connected monsoon regions. We argue that the global monsoon can be regarded as a hierarchical complex system into which regional monsoons are embedded in intermediate levels of the clustering hierarchy.</p>


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 833
Author(s):  
Ernest Amoussou ◽  
Hervé Awoye ◽  
Henri S. Totin Vodounon ◽  
Salomon Obahoundje ◽  
Pierre Camberlin ◽  
...  

This study characterizes the future changes in extreme rainfall and air temperature in the Mono river basin where the main economic activity is weather dependent and local populations are highly vulnerable to natural hazards, including flood inundations. Daily precipitation and temperature from observational datasets and Regional Climate Models (RCMs) output from REMO, RegCM, HadRM3, and RCA were used to analyze climatic variations in space and time, and fit a GEV model to investigate the extreme rainfalls and their return periods. The results indicate that the realism of the simulated climate in this domain is mainly controlled by the choice of the RCMs. These RCMs projected a 1 to 1.5 °C temperature increase by 2050 while the projected trends for cumulated precipitation are null or very moderate and diverge among models. Contrasting results were obtained for the intense rainfall events, with RegCM and HadRM3 pointing to a significant increase in the intensity of extreme rainfall events. The GEV model is well suited for the prediction of heavy rainfall events although there are uncertainties beyond the 90th percentile. The annual maxima of daily precipitation will also increase by 2050 and could be of benefit to the ecosystem services and socioeconomic activities in the Mono river basin but could also be a threat.


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


Sign in / Sign up

Export Citation Format

Share Document