The response of the D and E regions of the equatorial ionosphere to solar flare events

Author(s):  
P G Gopika ◽  
K M Ambili ◽  
R K Choudhary
2019 ◽  
Vol 71 (1) ◽  
Author(s):  
S. G. Sumod ◽  
Tarun Kumar Pant

AbstractThe response of equatorial ionosphere–thermosphere system to the X3.8 solar flare of January 17, 2005 has been studied using the coordinated measurements of GPS-derived Total Electron Content (TEC), OI 630.0 nm dayglow and magnetic field measurements over a dip equatorial station Trivandrum (8.5° N, 77° E, dip 0.5° N), in India. It has been observed that Equatorial Electrojet (EEJ) as inferred using the ground-based magnetometers and GPS-derived TEC measurements show prompt enhancements during the peak flare, as expected. Interestingly, the temporal evolution of TEC at different latitudes revealed that the X3.8 class flare produced significant weakening of the plasma fountain and hence in the Equatorial Ionization Anomaly (EIA). Furthermore, the response of OI 630.0 nm dayglow during the flare is found to be strongly affected by the prevailing electrodynamics. The plausible physical mechanism for these effects is discussed in context of the current understanding of the neutral and electrodynamical coupling processes.


1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


1979 ◽  
Vol 40 (C1) ◽  
pp. C1-98-C1-101
Author(s):  
L. Steenman-Clark ◽  
F. Bely Dubau ◽  
J. Dubau ◽  
P. Faucher ◽  
A. H. Gabriel ◽  
...  

2014 ◽  
Vol 4 (2) ◽  
pp. 555-564
Author(s):  
A.M Aslam

On September 24, 2011 a solar flare of M 7.1 class was released from the Sun. The flare was observed by most of the space and ground based observatories in various wavebands. We have carried out a study of this flare to understand its causes on Sun and impact on earth. The flare was released from NOAA active region AR 11302 at 12:33 UT. Although the region had already produced many M class flares and one X- class flare before this flare, the magnetic configuration was not relaxed and still continued to evolve as seen from HMI observations. From the Solar Dynamics Observatory (SDO) multi-wavelength (131 Ã…, 171 Ã…, 304 Ã… and 1600Ã…) observations we identified that a rapidly rising flux rope triggered the flare although HMI observations revealed that magnetic configuration did not undergo a much pronounced change. The flare was associated with a halo Coronal Mass Ejection (CME) as recorded by LASCO/SOHO Observations. The flare associated CME was effective in causing an intense geomagnetic storm with minimum Dst index -103 nT. A radio burst of type II was also recorded by the WAVES/WIND. In the present study attempt is made to study the nature of coupling between solar transients and geospace.


1989 ◽  
Author(s):  
Patricia L. Bornmann ◽  
Darren Kalmbach ◽  
David Kulhanek ◽  
April Casale

1997 ◽  
Vol 4 (5) ◽  
pp. 1929-1935 ◽  
Author(s):  
R. N. Sudan ◽  
D. S. Spicer
Keyword(s):  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Shinichi Watari ◽  
Satoko Nakamura ◽  
Yusuke Ebihara

AbstractWe need a typical method of directly measuring geomagnetically induced current (GIC) to compare data for estimating a potential risk of power grids caused by GIC. Here, we overview GIC measurement systems that have appeared in published papers, note necessary requirements, report on our equipment, and show several examples of our measurements in substations around Tokyo, Japan. Although they are located at middle latitudes, GICs associated with various geomagnetic disturbances are observed, such as storm sudden commencements (SSCs) or sudden impulses (SIs) caused by interplanetary shocks, geomagnetic storms including a storm caused by abrupt southward turning of strong interplanetary magnetic field (IMF) associated with a magnetic cloud, bay disturbances caused by high-latitude aurora activities, and geomagnetic variation caused by a solar flare called the solar flare effect (SFE). All these results suggest that GIC at middle latitudes is sensitive to the magnetospheric current (the magnetopause current, the ring current, and the field-aligned current) and also the ionospheric current.


Sign in / Sign up

Export Citation Format

Share Document