A Physical Model for Acoustic Noise Generated by Bedload Transport in Rivers

Author(s):  
M. Nasr ◽  
T. Geay ◽  
S. Zanker ◽  
A. Recking
2021 ◽  
Author(s):  
Mohamad Nasr ◽  
Thomas Geay ◽  
Sébastien Zanker ◽  
Recking Alain

<p>Quantifying bedload transport is important for many applications such as river management and hydraulic structures protection. Bedload flux measurements can be achieved using physical sampler methods. However, these methods are expensive, time-consuming, and difficult to operate during high discharge events. Besides, these methods do not permit to capture the spatial and temporal variability of bedload transport flux. Recently, alternative measuring technologies have been developed to continuously monitor bedload flux and grain size distribution using passive or active sensors. Among them, the hydrophone was used to monitor bedload transport by recording the sounds generated by bedload particles colliding on the river bed (referred as self-generated noise SGN). The acoustic power of SGN was correlated with bedload flux in field experiments. To better understand these experimental results and to estimate measurement uncertainties, we developed a theoretical model to simulate the SGN. The model computes an estimation of the power spectral density (PSD)by considering the contribution of all signals generated by impacts between bedload particles and the riverbed, and accounting for the attenuation of the acoustic signal between the source and the hydrophone position due to river propagation effects,. In this model, we</p><p>The energy of acoustic noise generated from the collision between two particles is mainly dependent on the transported particles' diameter and the impact velocity. We tested different empirical formulas for the estimation of the number of impact (impact rate) and the impact velocity depending on particle size and hydraulic conditions. To characterize the acoustic power losses as a function of distance and frequency, we used an attenuation function which was experimentally calibrated for different French rivers.</p><p>We tested the model on a field dataset comprising acoustic and bedload flux measurements. The results indicate that the PSD model allows estimating acoustic power (in between a range of one order of magnitude) for most of the rivers considered.  The model sensitivity was evaluated. In particular, we observed that it is very sensitive to the empirical formulas used to determine the impact rate and impact speed. In addition, special attention should be kept in mind on the assumption of the grain size distribution of riverbed which can generate large variability in some rivers particularly in rivers with a significant sand fraction.</p>


2006 ◽  
Vol 210 (S 1) ◽  
Author(s):  
M Lundh ◽  
A Nordell ◽  
J Bengtsson ◽  
Z Nagy ◽  
S Horsch ◽  
...  
Keyword(s):  

Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Sign in / Sign up

Export Citation Format

Share Document