Tidal and nontidal marsh restoration: a trade‐off between carbon sequestration, methane emissions, and soil accretion

Author(s):  
Ariane Arias‐Ortiz ◽  
Patty Y. Oikawa ◽  
Joseph Carlin ◽  
Pere Masqué ◽  
Julie Shahan ◽  
...  
2021 ◽  
Author(s):  
Tiantian Chen ◽  
Li Peng ◽  
Qiang Wang

Abstract The Grain to Green Program (GTGP), as a policy tool for advancing ecological progress, has been operating for 20 years and has played an important role in improving ecosystem service values. However, there are few studies on the trade-off/synergy changes in ecosystem services during the implementation of the GTGP and how to select the optimal scheme for regional ecological security based on the trade-off relationship. Thus, we took the Chengdu-Chongqing urban agglomeration (CCUA) in southwestern China as the study area; we used multisource data and the corresponding models and methods to estimate the regional food production, carbon sequestration, water yield, soil conservation and habitat quality services. Then, we clarified the trade-off/synergy relationships among ecosystem services from 2000 to 2015 by spatial analysis and statistical methods and evaluated the influential mechanism of the GTGP on trade-offs between ecosystem services. Finally, different risk scenarios were constructed by the ordered weighted average algorithm (OWA), and the regional ecological security pattern was simulated under the principle of the best protection efficiency and the highest trade-off degree. We found that (1) the trade-offs/synergies of regional ecosystem services changed significantly from 2000 to 2015. Among them, food production, water yield and soil conservation have always had trade-off relationships, while carbon sequestration, soil conservation and habitat quality have all had synergistic relationships. The relationships between carbon sequestration and water yield and food production changed from non-correlated to trade-off/synergistic, and the relationship between habitat quality and food production and water yield was not obvious. (2) Except for carbon sequestration service, the trade-off intensity between other ecosystem services decreased, indicating that the change trend of ecosystem services in the same direction was obvious. (3) The GTGP has been an important factor affecting the trade-off intensity of regional ecosystem services. On the one hand, it has strengthened the synergistic relationships among carbon sequestration, soil conservation and habitat quality; on the other hand, it has increased the constraints of water resources on soil conservation and vegetation restoration. (4) The decision risk coefficient α = 1.6 was the most suitable scenario, the total amount of regional ecosystem services was high, and the allocation was balanced under this scenario. The ecological security area corresponding to this scenario was also the area with high carbon sequestration and habitat quality services. The purpose of this study was to provide a scientific reference for the precise implementation of the GTGP.


2021 ◽  
Author(s):  
Aspen Tabar ◽  
Susan Guiteras ◽  
Jeff Tabar

<p>Prime Hook National Wildlife Refuge and its adjacent water bodies are important natural features along western Delaware Bay, USA. Historically salt and brackish marsh habitats, portions of the Refuge were diked and managed as freshwater impoundments starting in the early 1980s. Over the past decade, some of these impoundments have reverted to saline conditions, largely due to several storm events (including Hurricane Sandy in 2012) that have caused flooding, erosion, and opened several breaches between the Refuge and Delaware Bay. Because of these significant morphologic changes, the United States Fish and Wildlife Service (USFWS) completed a series of surveys, numerical modeling using Delft3D and coastal engineering analyses to aid in developing restoration alternatives for managing the Refuge and its marshlands. This work will review the results of the strategic planning used to recommend a preferred restoration alternative for managing the Refuge under the new environmental regime aimed at resilience. As a result of this effort, a project for restoring and managing the Refuge was recommended and constructed in 2018. Total cost of the project was $40 million US and was the largest restoration/recovery project authorized to address the impacts of Hurricane Sandy.</p><p>The project included two major components: 1) shoreline reconstruction and 2) marsh restoration.  The shoreline reconstruction portion of the project included placing approximately 1.2 million cubic meters of sand from an offshore borrow area along the shoreline to reconstruction a 12 m wide dune, 45 m beach berm and 30 m back-bay marsh platform (essentially rebuilding the entire barrier island). In addition, the project included a major marsh restoration effort including dredging 48 km of conveyance channels and “thin layer” disposal of 460,000 cubic meters of sediment to create 2,000 hectares of salt marsh.</p><p>Herein will present findings from an analysis using monitoring data and observations to evaluate converting freshwater wetlands to saltwater marshes and the resulting increase in carbon sequestration. As tidal marshes are restored, harmful emissions decline as the project site transforms from a freshwater to a saltwater environment. Therefore, carbon is stored in the soils more readily under tidal marsh conditions. The findings will show the increase in carbon sequestration as a result of the vegetation community response and discuss future projections.  Methodologies used for identifying vegetation community response included:</p><ul><li>Salt Marsh Integrity (SMI) and Saltmarsh Habitat & Avian Research Program (SHARP)</li> <li>Mid-Atlantic Tidal Rapid Assessment Method (MidTRAM)</li> <li>Normalized Difference Vegetation Index (NDVI)</li> </ul><p>This work will show the importance of incorporating coastal restoration projects and carbon sequestration into policies and management in the coastal zone.</p>


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Terri Cook

Methane emissions can drastically lower, or even reverse, the benefits of carbon sequestration in restored wetlands, according to new measurements from the Sacramento–San Joaquin Delta.


2019 ◽  
Vol 654 ◽  
pp. 651-661 ◽  
Author(s):  
Jorge A. Villa ◽  
Gloria M. Mejía ◽  
Daniela Velásquez ◽  
Andrés Botero ◽  
Sharon A. Acosta ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 992
Author(s):  
Teng Niu ◽  
Jiaxin Yu ◽  
Depeng Yue ◽  
Linzhe Yang ◽  
Xueqing Mao ◽  
...  

“Two ecological barriers and three shelters” (TEBTS), which has the effect of relieving ecological pressure, is the national ecological security pattern in China. Calculating the value of TEBTS ecosystem services, clarifying the synergy/trade-off relationships between ecosystem services, and maximizing the value of regional ecosystem services are of great significance for maintaining the security of the ecological civilization. At present, the research on ecosystem service synergy/trade-off has become the frontier field of ecology and related disciplines at home and abroad, and many research results have been obtained. However, there is still room and significance for continuing research to think about the synergy/trade-off relationship of ecosystems from the perspective of temporal and spatial heterogeneity: clarifying the spatial scope and spatial transmission characteristics of ecosystem service synergy/trade-off; exploring the trend of ecosystem service synergy/trade-off, and simulating the dynamic characteristics of natural factors affecting ecosystem services; and analyzing the characteristics of different spatial attributes that lead to the synergy/trade-off of ecosystem services. In this study, the Songhua River Basin (SRB), where the NFB is located, is used as the research area, the ecosystem services are simulated through the ecosystem assessment model, ecological unit (EU) is constructed as a research carrier, which is used to define the spatial scope of ecosystem services, and the influence of spatial characteristics and attribute characteristics on the change trend of the ecosystem service synergy/trade-off relationship is analyzed. The research found that water retention, soil conservation, and biodiversity did not change much from 2000 to 2015, and these ecosystem services have a greater value in the NFZ. The amount of carbon sequestration increased rapidly from 2010 to 2015. Crop production showed an increasing trend year by year. As the main grain production area, the Songnen Plain provides the main crop production function, which is greatly affected by humans. In the spatial characteristic, water retention, soil sequestration, and biodiversity present a very significant synergistic relationship, which is manifested in the obvious high-value aggregation characteristics in the NFZ, and crop production and the other four types of ecosystem services are in a trade-off relationship. At the time scale, the four types of ecosystem services, including water retention, soil conservation, biodiversity, and carbon sequestration, are synergistic, and crop production and water retention are synergistic. The vegetation types exhibiting a synergy/trade-off relationship are mainly broad-leaved forests, and the soil types are mainly luvisols and phaeozems. These EUs are mainly distributed in the NFZ and have spatial topological characteristics: the area and circumference of these EUs are smaller, the radius of gyration is also significantly smaller than that of other EUs, and the shape is more regular. By focusing on the spatial aggregation characteristics and changing trends of the ecosystem service synergy/trade-off and clarifying the influencing factors of the ecosystem service synergy/trade-off, the ecosystem services can be integrated, and the ecosystem can be optimized. Thus, the value of regional ecosystem services can be maximized, and a certain data foundation and theoretical support can be provided for major projects, such as ecological restoration and ecological environment governance, which is of great significance for improving the pattern of ecological security.


2021 ◽  
Vol 319 ◽  
pp. 107522
Author(s):  
Xin Lan ◽  
Zhiyong Liu ◽  
Xiaohong Chen ◽  
Kairong Lin ◽  
Linying Cheng

2015 ◽  
Vol 98 (8) ◽  
pp. 5557-5571 ◽  
Author(s):  
L.E. Moraes ◽  
J.G. Fadel ◽  
A.R. Castillo ◽  
D.P. Casper ◽  
J.M. Tricarico ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document