Finite hydraulic conductivity effects on optimal ground water pumping rates

1990 ◽  
Vol 26 (12) ◽  
pp. 2861-2864 ◽  
Author(s):  
W. R. Zimmerman
2021 ◽  
Author(s):  
Dhanya Narayanan ◽  
Eldho t i

<p>Demand for more sustainable aquifer management solution has exacerbated in view of the seawater intrusion occurring in coastal aquifers, particularly in arid areas, where surface water is not aplenty. Feasibility studies showed saline ground water pumping from within saltwater wedge, aiding in mitigation of seawater intrusion and thus re-freshening the aquifer. Such pumping from nearshore aquifer mostly draws water from the sea. The impact is pronounced for higher pumping rates, where the interface would be lowered and toe position get shifted towards seaward side. This implies that, the change in fluid motion may reduce the outflow through seepage face, which in turn affect the circulation of seawater within the wedge. In the present study, a standard test aquifer was simulated with finite difference model, SEAWAT, to know the effect of change in hydraulic gradient due to pumping, on seawater circulation. Saltwater circulation rates were calculated as the ratio between the total inflow across the seaside boundary to terrestrial freshwater flow.  The result demonstrated the shape of interface to resume a depressed conical form establishing a dispersed interface near the surrounding of saline groundwater well. This localized dispersion observed deduce the presence of weak density gradients between two fluids, hence reducing convective overturn. Performance analysis were carried out to infer the interaction between density dependent seawater circulation and change in hydraulic gradient for different pumping rates. This interaction needs to be known in advance before designing saline water pumping rates, as, significant transport of nutrients and contaminants occur within the saltwater wedge.</p>


2020 ◽  
Vol 4 (2) ◽  
pp. 100-111
Author(s):  
Adebola Adebayo Adekunle ◽  
Igba Uvieoghene Tobit ◽  
Ogunrinola Oluwaseyi Gbemiga

: Landfill liners are underlying materials with low permeability whose main function is to mitigate the infiltration of toxic contents into ground water lying beneath. Landfill liners are primarily made of bentonite clay. Bentonite has a very low hydraulic conductivity, that might not be readily accessible, unlike kaolin which is found to have a lower hydraulic conductivity compared to that of bentonite and can be extensively obtained from numerous different sources. Explored, for the purposes of the present research paper, were various ratios of bentonite and kaolin and their hydraulic conductivity, in particular ratios of 90:10 kaolin to bentonite, 80:20 kaolin to bentonite, 70:30 kaolin to bentonite, 60:40 kaolin to bentonite and 50:50 kaolin to bentonite in an effort to achieve an acceptable barrier suitable as a liner / where tap water and ammonium solution were used as permeants. It was concluded that the ratios not lower than 20% bentonite (80:20, 70:30, 60:40 and 50:50) all had their hydraulic conductivity value reduced compared to the 100% kaolin.


Author(s):  
Yukihisa Tanaka ◽  
Takuma Hasegawa ◽  
Kunihiko Nakamura

In case of construction of repository for radioactive waste near the coastal area, the effect of salinity of water on hydraulic conductivity as well as swelling pressure of bentonite as an engineered barrier should be considered because it is known that the hydraulic conductivity of bentonite increases and swelling pressure decreases with increasing salinity of water. Though the effect of salinity of water on hydraulic conductivity and swelling pressure of bentonite has been investigated experimentally, it is necessary to elucidate and to model the mechanism of the phenomenon because various kinds of bentonites may possibly be placed in various salinities of ground water. Thus, in this study, a model for evaluating hydraulic conductivity as well as swelling pressure of compacted bentonite is proposed considering the effect of salinity of water as follows: a) Change in number of flakes of a stack of montmorillonite because of cohesion. b) Change in viscosity of water in interlayer between flakes of montmorillonite. Quantitative evaluation method for hydraulic conductivity and swelling characteristics of several kinds of bentonites under saline water is proposed based on the model mentioned above.


1971 ◽  
Vol 97 (2) ◽  
pp. 223-232
Author(s):  
Norbert L. Ackermann ◽  
Y. Y. Chang

Sign in / Sign up

Export Citation Format

Share Document