Chemical remanent magnetization in synthetic magnetite

1991 ◽  
Vol 96 (B6) ◽  
pp. 9925 ◽  
Author(s):  
Thomas Pick ◽  
Lisa Tauxe
Nature ◽  
1987 ◽  
Vol 327 (6123) ◽  
pp. 610-612 ◽  
Author(s):  
Laura B. Stokking ◽  
Lisa Tauxe

2009 ◽  
Vol 46 (3) ◽  
pp. 155-167 ◽  
Author(s):  
Steven W. Denyszyn ◽  
Don W. Davis ◽  
Henry C. Halls

The north–south-trending Clarence Head dyke swarm, located on Devon and Ellesmere Islands in the Canadian High Arctic, has a trend orthogonal to that of the Neoproterozoic Franklin swarm that surrounds it. The Clarence Head dykes are dated by the U–Pb method on baddeleyite to between 716 ± 1 and 713 ± 1 Ma, ages apparently younger than, but within the published age range of, the Franklin dykes. Alpha recoil in baddeleyite is considered as a possible explanation for the difference in ages, but a comparison of the U–Pb ages of grains of equal size from both swarms suggests that recoil distances in baddeleyite are lower than those in zircon and that the Clarence Head dykes are indeed a distinctly younger event within the period of Franklin magmatism. The Clarence Head dykes represent a large swarm tangential to, and cogenetic with, a giant radiating dyke swarm ∼800 km from the indicated source. The preferred mechanism for the emplacement of the Clarence Head dykes is the exploitation of concentric zones of extension around a depleting and collapsing plume source. While the paleomagnetism of most Clarence Head dykes agrees with that of the Franklin dykes, two dykes have anomalous remanence directions, interpreted to be a chemical remanent magnetization carried by pyrrhotite. The pyrrhotite was likely deposited from fluids mobilized southward from the Devonian Ellesmerian Orogeny to the north that used the interiors of the dykes as conduits and precipitated pyrrhotite en route.


2019 ◽  
Vol 46 (20) ◽  
pp. 11100-11108
Author(s):  
Yong Zhang ◽  
Adrian R. Muxworthy ◽  
Dong Jia ◽  
Guoqi Wei ◽  
Bin Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document