Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations

1994 ◽  
Vol 99 (D2) ◽  
pp. 3615 ◽  
Author(s):  
David R. Hanson ◽  
A. R. Ravishankara ◽  
Susan Solomon
2016 ◽  
Author(s):  
Coty N. Jen ◽  
Jun Zhao ◽  
Peter H. McMurry ◽  
David R. Hanson

Abstract. Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to deprotonate and thus chemically ionize the clusters. In this study, we compare cluster concentrations measured using either nitrate or acetate. Clusters were formed in a flow reactor from vapors of sulfuric acid and dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine). These comparisons show that nitrate is unable to chemically ionize clusters with high base content. In addition, we vary the ion-molecule reaction time to probe ion processes which include proton-transfer, ion-molecule clustering, and decomposition of ions. Ion decomposition upon deprotonation by acetate/nitrate was observed. More studies are needed to quantify to what extent ion decomposition affects observed cluster content and concentrations, especially those chemically ionized with acetate since it deprotonates more types of clusters than nitrate. Model calculations of the neutral and ion cluster formation pathways are also presented to better identify the cluster types that are not efficiently deprotonated by nitrate. Comparison of model and measured clusters indicate that sulfuric acid dimer with two diamines and sulfuric acid trimer with two or more base molecules are not efficiently chemical ionized by nitrate. We conclude that acetate CI provides better information on cluster abundancies and their base content than nitrate CI.


2016 ◽  
Vol 16 (3) ◽  
pp. 1245-1254 ◽  
Author(s):  
T. P. Riedel ◽  
Y.-H. Lin ◽  
Z. Zhang ◽  
K. Chu ◽  
J. A. Thornton ◽  
...  

Abstract. Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.


1992 ◽  
Vol 58 (1-2) ◽  
pp. 117-123 ◽  
Author(s):  
Hidekazu Fujimaki ◽  
Noboru Katayama ◽  
Kazuo Wakamori

2015 ◽  
Vol 15 (20) ◽  
pp. 28289-28316 ◽  
Author(s):  
T. P. Riedel ◽  
Y.-H. Lin ◽  
Z. Zhang ◽  
K. Chu ◽  
J. A. Thornton ◽  
...  

Abstract. Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall-losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.


1978 ◽  
pp. 99-104 ◽  
Author(s):  
B.Y.H. LIU ◽  
D.Y.H. PUI ◽  
K.T. WHITBY ◽  
D.B. KITTELSON ◽  
Y. KOUSAKA ◽  
...  

1994 ◽  
Vol 33 (7) ◽  
pp. 785-790 ◽  
Author(s):  
Leah R. Williams ◽  
Jeffrey A. Manion ◽  
David M. Golden ◽  
Margaret A. Tolbert

1987 ◽  
Vol 2 (5) ◽  
pp. 188-199 ◽  
Author(s):  
Morton Lippmann ◽  
Jeffery M. Gearhart ◽  
Richard B. Schlesinger

Sign in / Sign up

Export Citation Format

Share Document