Early Paleozoic Island arc accretion to the North China craton and the Shang Dan fault zone: A major paleoplate boundary in eastern Asia

1996 ◽  
Vol 101 (B8) ◽  
pp. 17813-17826 ◽  
Author(s):  
M. F. Lerch ◽  
F. Xue ◽  
A. Kröner ◽  
W. Todt
2013 ◽  
Vol 734-737 ◽  
pp. 60-70
Author(s):  
Yu Shi ◽  
Xi Jun Liu ◽  
Zuo Hai Feng

The Qinling orogenic belt (QOB) located between the North China Craton (NCC) and the South China Craton (SCC) is composed of the Northern Qinling Belt (NQB) and the Southern Qinling Belt (SQB). This study presents new geochemical data, zircon U-Pb ages and Hf isotopes from two rocks from the Qinling complex in the NQB. LA-ICP-MS zircon U-Pb dating results suggest that the Qinling complex was formed in early Neoproterozoic and experienced the early Paleozoic metamorphism. HighεHf(t) values of 9.0-12.0 for the early Paleozoic zircons indicated that there is mantle-derived magma intruding into the Qinling complex in the early Paleozoic.


2020 ◽  
Author(s):  
Tuo Zheng ◽  
S. Stephen Gao ◽  
Zhifeng Ding ◽  
Xiaoping Fan

<p>To characterize crustal anisotropy beneath the North China Craton (NCC), we apply a recently developed deconvolution approach to effectively remove near-surface reverberations in the receiver functions recorded at 200 broadband seismic stations and subsequently determine the fast orientation and the magnitude of crustal azimuthal anisotropy by fitting the sinusoidal moveout of the P to S converted phases from the Moho and intracrustal discontinuities. The magnitude of crustal anisotropy is found to range from 0.06 s to 0.54 s, with an average of 0.25 ± 0.08 s. Fault-parallel anisotropy in the seismically active Zhangjiakou-Penglai Fault Zone is significant and could be related to fluid-filled fractures. Historical strong earthquakes mainly occurred in the fault zone segments with significant crustal anisotropy, suggesting that the measured crustal anisotropy is closely related to the degree of crustal deformation. The observed spatial distribution of crustal anisotropy suggests that the northwestern terminus of the fault zone probably ends at about 114°E. Also observed is a sharp contrast in the fast orientations between the western and eastern Yanshan Uplifts separated by the North-South Gravity Lineament. The NW-SE trending anisotropy in the western Yanshan Uplift is attributable to “fossil” crustal anisotropy due to lithospheric extension of the NCC, while extensional fluid-saturated microcracks induced by regional compressive stress are responsible for the observed ENE-WSW trending anisotropy in the eastern Yanshan Uplift. Comparison of crustal anisotropy measurements and previously determined upper mantle anisotropy implies that the degree of crust-mantle coupling in the NCC varies spatially.</p>


Tectonics ◽  
2021 ◽  
Vol 40 (4) ◽  
Author(s):  
Chen Wu ◽  
Andrew V. Zuza ◽  
An Yin ◽  
Xuanhua Chen ◽  
Peter J. Haproff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document