Formation Age of the Qinling Complex and the early Paleozoic Tectonic Event

2013 ◽  
Vol 734-737 ◽  
pp. 60-70
Author(s):  
Yu Shi ◽  
Xi Jun Liu ◽  
Zuo Hai Feng

The Qinling orogenic belt (QOB) located between the North China Craton (NCC) and the South China Craton (SCC) is composed of the Northern Qinling Belt (NQB) and the Southern Qinling Belt (SQB). This study presents new geochemical data, zircon U-Pb ages and Hf isotopes from two rocks from the Qinling complex in the NQB. LA-ICP-MS zircon U-Pb dating results suggest that the Qinling complex was formed in early Neoproterozoic and experienced the early Paleozoic metamorphism. HighεHf(t) values of 9.0-12.0 for the early Paleozoic zircons indicated that there is mantle-derived magma intruding into the Qinling complex in the early Paleozoic.

Author(s):  
Chen Wu ◽  
Jie Li ◽  
Andrew V. Zuza ◽  
Peter J. Haproff ◽  
Xuanhua Chen ◽  
...  

The Proterozoic−Phanerozoic tectonic evolution of the Qilian Shan, Qaidam Basin, and Eastern Kunlun Range was key to the construction of the Asian continent, and understanding the paleogeography of these regions is critical to reconstructing the ancient oceanic domains of central Asia. This issue is particularly important regarding the paleogeography of the North China-Tarim continent and South China craton, which have experienced significant late Neoproterozoic rifting and Phanerozoic deformation. In this study, we integrated new and existing geologic field observations and geochronology across northern Tibet to examine the tectonic evolution of the Qilian-Qaidam-Kunlun continent and its relationships with the North China-Tarim continent to the north and South China craton to the south. Our results show that subduction and subsequent collision between the Tarim-North China, Qilian-Qaidam-Kunlun, and South China continents occurred in the early Neoproterozoic. Late Neoproterozoic rifting opened the North Qilian, South Qilian, and Paleo-Kunlun oceans. Opening of the South Qilian and Paleo-Kunlun oceans followed the trace of an early Neoproterozoic suture. The opening of the Paleo-Kunlun Ocean (ca. 600 Ma) occurred later than the opening of the North and South Qilian oceans (ca. 740−730 Ma). Closure of the North Qilian and South Qilian oceans occurred in the Early Silurian (ca. 440 Ma), whereas the final consumption of the Paleo-Kunlun Ocean occurred in the Devonian (ca. 360 Ma). Northward subduction of the Neo-Kunlun oceanic lithosphere initiated at ca. 270 Ma, followed by slab rollback beginning at ca. 225 Ma evidenced in the South Qilian Shan and at ca. 194 Ma evidenced in the Eastern Kunlun Range. This tectonic evolution is supported by spatial trends in the timing of magmatism and paleo-crustal thickness across the Qilian-Qaidam-Kunlun continent. Lastly, we suggest that two Greater North China and South China continents, located along the southern margin of Laurasia, were separated in the early Neoproterozoic along the future Kunlun-Qinling-Dabie suture.


Geology ◽  
1998 ◽  
Vol 26 (9) ◽  
pp. 859 ◽  
Author(s):  
Weidong Sun ◽  
Shuguang Li ◽  
Hong-Fei Zhang ◽  
Shan Gao ◽  
Ben-Ren Zhang ◽  
...  

2021 ◽  
Vol 176 (9) ◽  
Author(s):  
Jia Chang ◽  
Andreas Audétat ◽  
Jian-Wei Li

AbstractMagmatic-hydrothermal gold–copper deposits in post-subduction settings represent essential targets for mineral exploration, but controls on their formation remain controversial. The early Cretaceous lode Au districts that formed during lithosphere destruction of the North China Craton provide an ideal opportunity to better understand the key tectono-magmatic factors responsible for the genesis of Au-rich deposits in post-subduction settings. Here, we present a LA-ICP-MS study of silicate melt inclusions and sulfide inclusions from ore-related mafic to intermediate rocks in the central Taihangshan Au district in the interior of the North China Craton to constrain the content and evolution of magmatic ore metals ± volatiles. The results, combined with numerical modeling, suggest that the ore-related magmas contained only a few ng/g Au, which is similar to the Au content of non-mineralization-related mafic to intermediate magmas worldwide. The low Au content of the lode Au-related magmas suggest that large volumes of magmas had to accumulate in the middle to lower crust through trans-lithospheric fault systems to produce the lode Au deposits. It is further suggested that the lode Au-related magmas were alkali-rich, hydrous, oxidized and relatively rich in sulfur and chlorine (mafic melt inclusions contain 0.14‒0.24 wt% S and 0.1‒0.2 wt% Cl). These properties are considered critical for the generation of auriferous ore fluids. By comparing the tectono-magmatic setting of the giant Jiaodong Au province (~ 4000 t Au) with the central Taihangshan district (~ 150 t Au), we propose that the much larger total Au tonnage of the Jiaodong district results from the accumulation of a much larger volume of ore-forming magmas at deep crustal levels, induced by a stronger degree of lithosphere modification. In addition, given that the composition of lode Au-related magmas is similar to that of porphyry Cu–Au-related magmas, the lack of giant, early Cretaceous porphyry Cu–Au deposits in the North China Craton suggests that strong extensional settings favor the formation of lode Au deposits instead of porphyry Cu–Au deposits. The present study, therefore, has general implications for the genesis of Au-rich deposits in strongly extensional settings.


2021 ◽  
Vol 261 ◽  
pp. 03058
Author(s):  
Fengyu Sun ◽  
Gaoshe Cao ◽  
Qikai Zhou

The bauxite layer in Western Henan supplies a large number of bauxite ores and is useful for studying tectonic movement. In this paper, the bauxite samples were selected to carry out LA-ICP-MS detrital zircons U-Pb dating and Hf isotope testing. The results indicated that the detrital zircons with the Early Paleozoic ages were mainly derived from the North Qinling Orogenic Belt. The detrital zircons of the Precambrian age may be derived mainly from the basement of the North China Block and the North Qinling Orogenic Belt. The results of this study support the opinion that the North Qinling Orogenic Belt has been uplifted at ~310 Ma, and the surface of the southern craton has an overall north-dipping topography at this time.


2020 ◽  
Author(s):  
Jiahui Qian ◽  
et al.

Table S1: Selected microprobe analyses for amphibolite from the north Hengshan terrane; Table S2: Bulk-rock compositions and their normalized mole-proportions of amphibolite from the north Hengshan terrane; Table S3: Zircon U-Pb isotopic data obtained by LA-ICP-MS for amphibolite sample H1718 from the north Hengshan terrane; Table S4: Titanium and ree compositions (ppm) of zircons for amphibolite sample H1718 from the north Hengshan terrane.


Sign in / Sign up

Export Citation Format

Share Document