Dynamical significance of the Tanlu Fault Zone in the destruction of the North China Craton: The evidence provided by the three-dimensional Magnetotelluric array study

2021 ◽  
pp. 228910
Author(s):  
Gaofeng Ye ◽  
Cheng Liu ◽  
Xu Luo ◽  
Sheng Jin ◽  
Wenbo Wei ◽  
...  
2020 ◽  
Author(s):  
Tuo Zheng ◽  
S. Stephen Gao ◽  
Zhifeng Ding ◽  
Xiaoping Fan

<p>To characterize crustal anisotropy beneath the North China Craton (NCC), we apply a recently developed deconvolution approach to effectively remove near-surface reverberations in the receiver functions recorded at 200 broadband seismic stations and subsequently determine the fast orientation and the magnitude of crustal azimuthal anisotropy by fitting the sinusoidal moveout of the P to S converted phases from the Moho and intracrustal discontinuities. The magnitude of crustal anisotropy is found to range from 0.06 s to 0.54 s, with an average of 0.25 ± 0.08 s. Fault-parallel anisotropy in the seismically active Zhangjiakou-Penglai Fault Zone is significant and could be related to fluid-filled fractures. Historical strong earthquakes mainly occurred in the fault zone segments with significant crustal anisotropy, suggesting that the measured crustal anisotropy is closely related to the degree of crustal deformation. The observed spatial distribution of crustal anisotropy suggests that the northwestern terminus of the fault zone probably ends at about 114°E. Also observed is a sharp contrast in the fast orientations between the western and eastern Yanshan Uplifts separated by the North-South Gravity Lineament. The NW-SE trending anisotropy in the western Yanshan Uplift is attributable to “fossil” crustal anisotropy due to lithospheric extension of the NCC, while extensional fluid-saturated microcracks induced by regional compressive stress are responsible for the observed ENE-WSW trending anisotropy in the eastern Yanshan Uplift. Comparison of crustal anisotropy measurements and previously determined upper mantle anisotropy implies that the degree of crust-mantle coupling in the NCC varies spatially.</p>


2000 ◽  
Vol 13 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Xue Niu ◽  
Zao-Xun Lu ◽  
De-Lu Jiang ◽  
Qing-Qing Lei ◽  
Sheng-Chang Shi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xingpeng Dong ◽  
Dinghui Yang ◽  
Fenglin Niu ◽  
Shaolin Liu ◽  
Ping Tong

AbstractThe North China craton (NCC) was dominated by tectonic extension from late Cretaceous to Cenozoic, yet seismic studies on the relationship between crust extension and lithospheric mantle deformation are scarce. Here we present a three dimensional radially anisotropic model of NCC derived from adjoint traveltime tomography to address this issue. We find a prominent low S-wave velocity anomaly at lithospheric mantle depths beneath the Taihang Mountains, which extends eastward with a gradually decreasing amplitude. The horizontally elongated low-velocity anomaly is also featured by a distinctive positive radial anisotropy (VSH > VSV). Combining geodetic and other seismic measurements, we speculate the presence of a horizontal mantle flow beneath central and eastern NCC, which led to the extension of the overlying crust. We suggest that the rollback of Western Pacific slab likely played a pivotal role in generating the horizontal mantle flow at lithospheric depth beneath the central and eastern NCC.


Sign in / Sign up

Export Citation Format

Share Document