Resonant Alfven wave excitation in two-dimensional systems

1996 ◽  
Vol 101 (A6) ◽  
pp. 13345-13348
Author(s):  
C. Uberoi
Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1262 ◽  
Author(s):  
Cristina Ponti ◽  
Giuseppe Schettini

An overview of the cylindrical wave approach in the modeling of through-wall radar problems with targets hidden behind a dielectric wall is reported. The cylindrical wave approach is a technique for the solution of the two-dimensional scattering by buried circular cross-section cylinders in a semi-analytical way, through expansion of the scattered fields into cylindrical waves. In a through-wall radar application, the scattering environment is made by a dielectric layer between two semi-infinite half-spaces filled by air. For this layout, two possible implementations of the cylindrical wave approach have been developed in the case of plane-wave excitation. The first was an iterative scheme with multiple-reflection scattered fields, and the second was a fast and non-iterative solution, through suitable basis functions (i.e., reflected and transmitted cylindrical waves). Such waves take into account all the interactions of the source field with the interfaces bounding the dielectric layers and the targets. The non-iterative approach was also extended for excitation from the radiated field by a line source. A final system was derived for the computation of the scattered field by PEC or dielectric targets. Numerical results show the potentialities of the cylindrical wave approach in the modeling of through-wall radar, in particular in the evaluation of the scattered fields by human targets in a building’s interior, modeled with a two-dimensional approach.


1983 ◽  
Vol 38 (6) ◽  
pp. 616-624
Author(s):  
M. Bureš

A transversely magnetized cylindrical plasma model with an internal rod conductor is used to approximate the FIVA internal ring device of Spherator type with a purely poloidal magnetic field. It is shown that an excitation asymmetry along the plasma column, i.e. with a wave number k2 ≠ 0, introduces a coupling between the magnetoacoustic and shear Alfven waves in the frequency range ω ≪ ωci. The introduction of an equilibrium mass motion along the plasma cylinder introduces a flow continuum. Simultaneously the Alfven resonance frequency becomes Doppler shifted. The experimental observations indicate that cavity modes do not build up in the FIVA device in the case of nonsymmetric excitation. If on the other hand the exciting structure becomes symmetric, i.e. with k2 = 0, the magnetoacoustic resonances become excited. The resulting Q values are rather low which indicates that the coupling to the shear wave through the Hall electric field cannot be neglected


1960 ◽  
Vol 7 (3) ◽  
pp. 449-468 ◽  
Author(s):  
James E. McCune

A two-dimensional, small-perturbation theory for the steady motion of thin lifting airfoils in an incompressible conducting fluid, with the uniform applied magnetic field perpendicular to (and in the plane of) the undisturbed, uniform flow field, is described. The conductivity of the fluid is assumed to be such that the magnetic Reynolds number,Rm, of the flow is large but finite. Within this assumption, a theory based on superposition of sinusoidal modes is constructed and applied to some simple thin airfoil problems.It is shown that with this particular field geometry the Alfvén wave mechanism is important in making possible very deep penetration into the flow field of currents and their associated vorticity. It is also shown that the current penetration for an airfoil is much larger than for a wavy wall of wavelength equal to the airfoil chord.A value ofRm= 5 is found to be a good approximation to infinity in this study; in fact, use of the present technique for values ofRmof the order of unity is permissible. These results provide an indication of what is meant by ‘large’ magnetic Reynolds number in two-dimensional magneto-aerodynamics.


2018 ◽  
Vol 618 ◽  
pp. A84 ◽  
Author(s):  
P. Zarka ◽  
M. S. Marques ◽  
C. Louis ◽  
V. B. Ryabov ◽  
L. Lamy ◽  
...  

By analysing a database of 26 yr of observations of Jupiter with the Nançay Decameter Array, we unambiguously identify the radio emissions caused by the Ganymede–Jupiter interaction. We study the energetics of these emissions via the distributions of their intensities, duration, and power, and compare them to the energetics of the Io–Jupiter radio emissions. This allows us to demonstrate that the average emitted radio power is proportional to the Poynting flux from the rotating Jupiter’s magnetosphere intercepted by the obstacle. We then generalize this result to the radio-magnetic scaling law that appears to apply to all plasma interactions between a magnetized flow and an obstacle, magnetized or not. Extrapolating this scaling law to the parameter range corresponding to hot Jupiters, we predict large radio powers emitted by these objects, that should result in detectable radio flux with new-generation radiotelescopes. Comparing the distributions of the durations of Ganymede–Jupiter and Io–Jupiter emission events also suggests that while the latter results from quasi-permanent Alfvén wave excitation by Io, the former likely results from sporadic reconnection between magnetic fields Ganymede and Jupiter, controlled by Jupiter’s magnetic field geometry and modulated by its rotation.


Sign in / Sign up

Export Citation Format

Share Document