Heating and low-frequency modulation of electrons observed during electron beam operations on TSS 1

1997 ◽  
Vol 102 (A8) ◽  
pp. 17335-17357 ◽  
Author(s):  
M. P. Gough ◽  
D. A. Hardy ◽  
W. J. Burke ◽  
M. R. Oberhardt ◽  
L. C. Gentile ◽  
...  
2004 ◽  
Vol 11 (2) ◽  
pp. 215-218 ◽  
Author(s):  
S. G. Tagare ◽  
S. V. Singh ◽  
R. V. Reddy ◽  
G. S. Lakhina

Abstract. Small amplitude electron - acoustic solitons are studied in a magnetized plasma consisting of two types of electrons, namely cold electron beam and background plasma electrons and two temperature ion plasma. The analysis predicts rarefactive solitons. The model may provide a possible explanation for the perpendicular polarization of the low-frequency component of the broadband electrostatic noise observed in the Earth's magnetotail.


2001 ◽  
Vol 56 (6-7) ◽  
pp. 509-522 ◽  
Author(s):  
P. K. Bhatia ◽  
B. S. Bhadauria

Abstract The stability of a horizontal layer of fluid heated from below is examined when, in addition to a steady temperature difference between the horizontal walls of the layer a time-dependent low-frequency per­ turbation is applied to the wall temperatures. An asymptotic solution is obtained which describes the be­ haviour of infinitesimal disturbances to this configuration. Possible stability criteria are analyzed and the results are compared with the known experimental as well as numerical results.


1978 ◽  
Vol 19 (2) ◽  
pp. 295-299
Author(s):  
Réal R. J. Gagné ◽  
Magdi M. Shoucri

The dispersion relations for the quasi-static lower hybrid surface waves are derived. Conditions for their existence and their linear excitation by a small density electron beam are discussed. Instabilities appearing in low-frequency surface waves are also discussed.


1991 ◽  
Vol 46 (2) ◽  
pp. 237-246
Author(s):  
A. S. Paithankar ◽  
G. P. Gupta

During propagation of a relativistic electron beam in hydrogen gas at sub-torr pressures using a foil-less diode, low-frequency oscillations in the megahertz range are observed in the net current wave forms, and continue even after passage of the beam. The novel feature of the experiment is that both beam generation and propagation take place in the same low-pressure regime, and hence the beam parameters are functions of gas pressures. Analysis of the experimental results shows that the low-frequency oscillations result from the resistive-hose instability.


Sign in / Sign up

Export Citation Format

Share Document