Upper mantle viscosity derived from the difference in rebound of the Provo and Bonneville Shorelines: Lake Bonneville Basin, Utah

1981 ◽  
Vol 86 (B12) ◽  
pp. 11701 ◽  
Author(s):  
Quinn R. Passey
2020 ◽  
Vol 224 (2) ◽  
pp. 961-972
Author(s):  
A G Semple ◽  
A Lenardic

SUMMARY Previous studies have shown that a low viscosity upper mantle can impact the wavelength of mantle flow and the balance of plate driving to resisting forces. Those studies assumed that mantle viscosity is independent of mantle flow. We explore the potential that mantle flow is not only influenced by viscosity but can also feedback and alter mantle viscosity structure owing to a non-Newtonian upper-mantle rheology. Our results indicate that the average viscosity of the upper mantle, and viscosity variations within it, are affected by the depth to which a non-Newtonian rheology holds. Changes in the wavelength of mantle flow, that occur when upper-mantle viscosity drops below a critical value, alter flow velocities which, in turn, alter mantle viscosity. Those changes also affect flow profiles in the mantle and the degree to which mantle flow drives the motion of a plate analogue above it. Enhanced upper-mantle flow, due to an increasing degree of non-Newtonian behaviour, decreases the ratio of upper- to lower-mantle viscosity. Whole layer mantle convection is maintained but upper- and lower-mantle flow take on different dynamic forms: fast and concentrated upper-mantle flow; slow and diffuse lower-mantle flow. Collectively, mantle viscosity, mantle flow wavelengths, upper- to lower-mantle velocities and the degree to which the mantle can drive plate motions become connected to one another through coupled feedback loops. Under this view of mantle dynamics, depth-variable mantle viscosity is an emergent flow feature that both affects and is affected by the configuration of mantle and plate flow.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David Wallis ◽  
Lars N. Hansen ◽  
Angus J. Wilkinson ◽  
Ricardo A. Lebensohn

AbstractChanges in stress applied to mantle rocks, such as those imposed by earthquakes, commonly induce a period of transient creep, which is often modelled based on stress transfer among slip systems due to grain interactions. However, recent experiments have demonstrated that the accumulation of stresses among dislocations is the dominant cause of strain hardening in olivine at temperatures ≤600 °C, raising the question of whether the same process contributes to transient creep at higher temperatures. Here, we demonstrate that olivine samples deformed at 25 °C or 1150–1250 °C both preserve stress heterogeneities of ~1 GPa that are imparted by dislocations and have correlation lengths of ~1 μm. The similar stress distributions formed at these different temperatures indicate that accumulation of stresses among dislocations also provides a contribution to transient creep at high temperatures. The results motivate a new generation of models that capture these intragranular processes and may refine predictions of evolving mantle viscosity over the earthquake cycle.


Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 447-459 ◽  
Author(s):  
H. Steffen ◽  
G. Kaufmann ◽  
R. Lampe

Abstract. During the last glacial maximum, a large ice sheet covered Scandinavia, which depressed the earth's surface by several 100 m. In northern central Europe, mass redistribution in the upper mantle led to the development of a peripheral bulge. It has been subsiding since the begin of deglaciation due to the viscoelastic behaviour of the mantle. We analyse relative sea-level (RSL) data of southern Sweden, Denmark, Germany, Poland and Lithuania to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a 1-D Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and ICE-5G from the University of Toronto. Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Ringkøbing-Fyn High. In Poland and Lithuania, lithospheric thickness reaches up to 160 km. However, the latter values are not well constrained as the confidence regions are large. Upper-mantle viscosity is found to bracket [2–7] × 1020 Pa s when using ICE-5G. Employing RSES much higher values of 2 × 1021 Pa s are obtained for the southern Baltic Sea. Further investigations should evaluate whether this ice-model version and/or the RSL data need revision. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved. The lithospheric structure inferred from RSES partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested lithosphere models. The lithospheric thickness as determined with ICE-5G does not agree with the lithosphere models. Hence, more investigations have to be undertaken to sufficiently determine structures such as the Ringkøbing-Fyn High as seen with seismics with the help of glacial isostatic adjustment modelling.


2021 ◽  
Author(s):  
Sam Treweek

<p><b>The differing structural evolution of cratonic East Antarctica and younger West Antarctica has resulted in contrasting lithospheric and asthenospheric mantle viscosities between the two regions. Combined with poor constraints on the upper mantle viscosity structure of the continent, estimates of surface uplift in Antarctica predicted from models of glacial isostatic adjustment (GIA) and observed by Global Satellite Navigation System (GNSS) contain large misfits. This thesis presents a gravity study ofthe lithospheric transition zone beneath the Taylor Valley, Antarctica, conducted to constrain the variation in lithological parameters such as viscosity and density of the upper mantle across this region.</b></p> <p>During this study 119 new gravity observations were collected in the ice-free regions of the Taylor Valley and amalgamated with 154 existing land-based gravity observations, analysed alongside aerogravity measurements of southern Victoria Land. Gravity data are used to construct 2D gravity models of the subsurface beneath this region. An eastward gradient in Bouguer anomalies of ~- 1.6 mGal/km is observed within the Taylor Valley. Models reveal thickening of the Moho from 23±5 km beneath the Ross Sea to 35±5 km in the Polar Plateau (dipping at 24.5±7.2°), and lithospheric mantle 100 km thicker in East Antarctica (~200±30 km) than West Antarctica (~90±30 km). </p> <p>Models of predicted surface uplift history are used to estimate an asthenospheric mantle viscosity of 2.1x1020 Pa.s at full surface recovery beneath the Ross Embayment, differing by ~14% from the viscosity at 50% recovery. The temperature contrast between lithospheric and asthenospheric mantle is estimated as ~400°C, equivalent to a viscosity that decreases by a factor of about 30 over the mantle boundary.</p> <p>Results demonstrate that the history of surface uplift in the study area may be complicated, resulting in observations of uplift, or subsidence, at GNSS stations. Future work should incorporate additional geophysical methods, such as seismicity and electrical resistivity, improving constraints on gravity models. A better understanding of the surface uplift (or subsidence) history in the Transantarctic Mountains is critical, with implications in reducing uncertainty in GIA models.</p>


2003 ◽  
Vol 60 (2) ◽  
pp. 200-210 ◽  
Author(s):  
Charles G. Oviatt ◽  
David B. Madsen ◽  
Dave N. Schmitt

AbstractField investigations at Dugway Proving Ground in western Utah have produced new data on the chronology and human occupation of late Pleistocene and early Holocene lakes, rivers, and wetlands in the Lake Bonneville basin. We have classified paleo-river channels of these ages as “gravel channels” and “sand channels.” Gravel channels are straight to curved, digitate, and have abrupt bulbous ends. They are composed of fine gravel and coarse sand, and are topographically inverted (i.e., they stand higher than the surrounding mudflats). Sand channels are younger and sand filled, with well-developed meander-scroll morphology that is truncated by deflated mudflat surfaces. Gravel channels were formed by a river that originated as overflow from the Sevier basin along the Old River Bed during the late regressive phases of Lake Bonneville (after 12,500 and prior to 11,000 14C yr B.P.). Dated samples from sand channels and associated fluvial overbank and wetland deposits range in age from 11,000 to 8800 14C yr B.P., and are probably related to continued Sevier-basin overflow and to groundwater discharge. Paleoarchaic foragers occupied numerous sites on gravel-channel landforms and adjacent to sand channels in the extensive early Holocene wetland habitats. Reworking of tools and limited toolstone diversity is consistent with theoretical models suggesting Paleoarchaic foragers in the Old River Bed delta were less mobile than elsewhere in the Great Basin.


2005 ◽  
Vol 39 (2) ◽  
pp. 91-109 ◽  
Author(s):  
Sten Bergstrand ◽  
Hans-Georg Scherneck ◽  
Glenn A. Milne ◽  
Jan M. Johansson

Sign in / Sign up

Export Citation Format

Share Document