Low-frequency wind-induced sea level oscillations along the east coast of North America

1979 ◽  
Vol 84 (C6) ◽  
pp. 3227 ◽  
Author(s):  
Marlene Noble ◽  
Brad Butman
2017 ◽  
Author(s):  
Allison Pease ◽  
◽  
James Davis
Keyword(s):  

2021 ◽  
Vol 52 ◽  
pp. 105-118
Author(s):  
Umberto Tammaro ◽  
Francesco Obrizzo ◽  
Umberto Riccardi ◽  
Adriano La Rocca ◽  
Salvatore Pinto ◽  
...  

Abstract. In this study, we investigate the oscillations of relative sea level through the analysis of tide gauge records about 10-year long collected in the Gulfs of Pozzuoli and Napoli (Southern Italy). The main goal of this study is to provide a suitable resolution model of the sea tides including low frequency (seiches), tidal bands and non-linear tides. The spectral analyses of the tide gauge records lead us to identify a number of seiche periods some of them already known from the literature and some other unknown. Furthermore, we target a non-conventional purpose of the tidal analysis, namely extracting from the tide gauge records the volcano-tectonic signal (vertical ground displacement) in the resurgent Campi Flegrei caldera. We suggest a method to filter out the volcano-tectonic signal (bradyseism) from the tide gauge records by deconvolving it from two records, one collected in the active volcanic area (Pozzuoli) and the other one collected in a tectonically stable station (Napoli), located beyond the caldera rim. Finally, we retrieve the relative mean sea level change in the Gulf of Naples and compare it with the trend found in five tide gauges spread along the Italian coast.


2014 ◽  
Vol 11 (1) ◽  
pp. 575-611
Author(s):  
P. Mehra ◽  
S. Mohan ◽  
P. Vethamony ◽  
K. Vijaykumar ◽  
T. M. Balakrishnan Nair ◽  
...  

Abstract. The study examines the observed storm-generated sea-level variation due to deep depression (Event-E1) in the Arabian Sea from 26 November–1 December 2011 and a cyclonic storm "THANE" (Event-E2) over the Bay of Bengal during 25–31 December 2011. The sea-level and surface meteorological measurements collected during these extreme events exhibit strong synoptic disturbances leading to storm surge up to 43 cm on the west coast and 29 cm on the east coast of India due to E1 and E2. E1 generated sea level oscillations at the measuring stations on the west coast (Ratnagiri, Verem and Karwar) and east coast (Mandapam and Tuticorin) of India with significant energy bands centered at periods of 92, 43 and 23 min. The surge dome has a duration of 92.6, 84.5 and 74.8 h at Ratnagiri, Verem and Karwar, respectively. However, on the east coast, the sea level oscillations during Thane were similar to those during calm period except for more energy bands centred at periods of ~ 100, 42 and 24 min at Gopalpur, Gangavarm and Kakinada, respectively. Multi-linear regression analysis shows that the local surface meteorological data (daily-mean wind and atmospheric pressure) is able to account for ~ 57% and ~ 70% of daily-mean sea-level variability along the east and west coast of India. The remaining part of variability observed in the sea level may be attributed to local coastal currents and remote forcing.


2020 ◽  
Author(s):  
Eugeny A. Zakharchuk ◽  
Natalia Tikhonova ◽  
Elena Zakharova

Abstract. Free sea level oscillations in barotropic and baroclinic conditions were examined using numerical experiments based on a 3D hydrodynamic model of the Baltic Sea. In a barotropic environment, the highest amplitudes of free sea level oscillations are observed in the northern Gulf of Bothnia, eastern Gulf of Finland, and south-western Baltic Sea. In these areas, the maximum variance appears within the frequency range corresponding to periods of 13–44 hr. In a stratified environment, after the cessation of meteorological forcing, water masses relax to the equilibrium state in the form of mesoscale oscillations at the same frequencies as well as in the form of rapidly decaying low-frequency (seasonal) oscillations. The total amplitudes of free baroclinic perturbations are significantly larger than those of barotropic perturbations, reaching 15–17 cm. Contrary to barotropic, oscillations in baroclinic conditions are strongly pronounced in the deep-water areas of the Baltic Sea Proper. Specific spatial patterns of amplitudes and phases of free barotropic and baroclinic sea level oscillations identified them as progressive-standing waves representing barotropic or baroclinic modes of gravity waves and topographic Rossby waves.


Sign in / Sign up

Export Citation Format

Share Document