scholarly journals Neapolitan volcanic area Tide Gauge Network (Southern Italy): Ground Displacements and Sea-Level Oscillations

2021 ◽  
Vol 52 ◽  
pp. 105-118
Author(s):  
Umberto Tammaro ◽  
Francesco Obrizzo ◽  
Umberto Riccardi ◽  
Adriano La Rocca ◽  
Salvatore Pinto ◽  
...  

Abstract. In this study, we investigate the oscillations of relative sea level through the analysis of tide gauge records about 10-year long collected in the Gulfs of Pozzuoli and Napoli (Southern Italy). The main goal of this study is to provide a suitable resolution model of the sea tides including low frequency (seiches), tidal bands and non-linear tides. The spectral analyses of the tide gauge records lead us to identify a number of seiche periods some of them already known from the literature and some other unknown. Furthermore, we target a non-conventional purpose of the tidal analysis, namely extracting from the tide gauge records the volcano-tectonic signal (vertical ground displacement) in the resurgent Campi Flegrei caldera. We suggest a method to filter out the volcano-tectonic signal (bradyseism) from the tide gauge records by deconvolving it from two records, one collected in the active volcanic area (Pozzuoli) and the other one collected in a tectonically stable station (Napoli), located beyond the caldera rim. Finally, we retrieve the relative mean sea level change in the Gulf of Naples and compare it with the trend found in five tide gauges spread along the Italian coast.

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1686 ◽  
Author(s):  
Gaia Mattei ◽  
Salvatore Troisi ◽  
Pietro Aucelli ◽  
Gerardo Pappone ◽  
Francesco Peluso ◽  
...  

This paper shows an interesting case of coastal landscape reconstruction by using innovative marine robotic instrumentation, applied to an archaeological key-site in the Campi Flegrei (Italy), one of the more inhabited areas in the Mediterranean during the Roman period. This active volcanic area is world famous for the ancient coastal cities of Baiae, Puteoli, and Misenum, places of military and commercial excellence. The multidisciplinary study of the submerged Roman harbour at Nisida Island was aimed at reconstructing the natural and anthropogenic underwater landscape by elaborating a multiscale dataset. The integrated marine surveys were carried out by an Unmanned Surface Vehicle (USV) foreseeing the simultaneous use of geophysical and photogrammetric sensors according to the modern philosophy of multi-modal mapping. All instrumental measurements were validated by on-site measurements performed by specialised scuba divers. The multiscale analysis of the sensing data allowed a precise reconstruction of the coastal morpho-evolutive trend and the relative sea level variation in the last 2000 years by means of a new type of archaeological sea-level marker here proposed for the first time. Furthermore, it provided a detailed multidimensional documentation of the underwater cultural heritage and a useful tool for evaluating the conservation state of archaeological submerged structures.


2020 ◽  
Vol 10 (1) ◽  
pp. 62-68
Author(s):  
H. Bâki Iz ◽  
C. K. Shum ◽  
T. Y. Yang

AbstractThis study demonstrates that absolute (geocentric) and relative sea level trends, sea level acceleration, low frequency sea level variations and linear trends in vertical crustal movements experienced at a tide gauge station can be estimated simultaneously using conflated satellite altimetry and tide gauge measurements without the aid of GPS measurements. The formulation is the first of its kind in sea level studies and its effectiveness is exemplified using tide gauge, and satellite altimetry measurements carried out in the vicinity of a tide gauge station.


2019 ◽  
Vol 9 (1) ◽  
pp. 154-173
Author(s):  
I. Mintourakis ◽  
G. Panou ◽  
D. Paradissis

Abstract Precise knowledge of the oceanic Mean Dynamic Topography (MDT) is crucial for a number of geodetic applications, such as vertical datum unification and marine geoid modelling. The lack of gravity surveys over many regions of the Greek seas and the incapacity of the space borne gradiometry/gravity missions to resolve the small and medium wavelengths of the geoid led to the investigation of the oceanographic approach for computing the MDT. We compute two new regional MDT surfaces after averaging, for given epochs, the periodic gridded solutions of the Dynamic Ocean Topography (DOT) provided by two ocean circulation models. These newly developed regional MDT surfaces are compared to three state-of-theart models, which represent the oceanographic, the geodetic and the mixed oceanographic/geodetic approaches in the implementation of the MDT, respectively. Based on these comparisons, we discuss the differences between the three approaches for the case study area and we present some valuable findings regarding the computation of the regional MDT. Furthermore, in order to have an estimate of the precision of the oceanographic approach, we apply extensive evaluation tests on the ability of the two regional ocean circulation models to track the sea level variations by comparing their solutions to tide gauge records and satellite altimetry Sea Level Anomalies (SLA) data. The overall findings support the claim that, for the computation of the MDT surface due to the lack of geodetic data and to limitations of the Global Geopotential Models (GGMs) in the case study area, the oceanographic approach is preferable over the geodetic or the mixed oceano-graphic/geodetic approaches.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
H. Bâki Iz ◽  
C. K. Shum ◽  
C. Zhang ◽  
C. Y. Kuo

AbstractThis study demonstrates that relative sea level trends calculated from long-term tide gauge records can be used to estimate relative vertical crustal velocities in a region with high accuracy. A comparison of the weighted averages of the relative sea level trends estimated at six tide gauge stations in two clusters along the Eastern coast of United States, in Florida and in Maryland, reveals a statistically significant regional vertical crustal motion of Maryland with respect to Florida with a subsidence rate of −1.15±0.15 mm/yr identified predominantly due to the ongoing glacial isostatic adjustment process. The estimate is a consilience value to validate vertical crustal velocities calculated from GPS time series as well as towards constraining predictive GIA models in these regions.


2021 ◽  
Author(s):  
Krešimir Ruić ◽  
Jadranka Šepić ◽  
Maja Karlović ◽  
Iva Međugorac

<p>Extreme sea levels are known to hit the Adriatic Sea and to occasionally cause floods that produce severe material damage. Whereas the contribution of longer-period (T > 2 h) sea-level oscillations to the phenomena has been well researched, the contribution of the shorter period (T < 2 h) oscillations is yet to be determined. With this aim, data of 1-min sampling resolution were collected for 20 tide gauges, 10 located at the Italian (north and west) and 10 at the Croatian (east) Adriatic coast. Analyses were done on time series of 3 to 15 years length, with the latest data coming from 2020, and with longer data series available for the Croatian coast. Sea level data were thoroughly checked, and spurious data were removed. </p><p>For each station, extreme sea levels were defined as events during which sea level surpasses its 99.9 percentile value. The contribution of short-period oscillations to extremes was then estimated from corresponding high-frequency (T < 2 h) series. Additionally, for four Croatian tide gauge stations (Rovinj, Bakar, Split, and Dubrovnik), for period of 1956-2004, extreme sea levels were also determined from the hourly sea level time series, with the contribution of short-period oscillations visually estimated from the original tide gauge charts.  </p><p>Spatial and temporal distribution of contribution of short-period sea-level oscillations to the extreme sea level in the Adriatic were estimated. It was shown that short-period sea-level oscillation can significantly contribute to the overall extremes and should be considered when estimating flooding levels. </p>


2021 ◽  
Author(s):  
Mika Rantanen ◽  
Jani Särkkä ◽  
Jani Räihä ◽  
Matti Kämäräinen ◽  
Kirsti Jylhä

<p>Extremely high sea levels on the Finnish coast are typically caused by close passages of extratropical cyclones (ETCs), which raise the sea level with their associated extreme winds and lower air pressure. For coastal infrastructure, such as nuclear power plants, it is crucial to study physically possible sea level heights associated with ETCs. Such sea levels are not straightforward to determine from observational datasets only, because tide gauge records  cover about 100 years and do not necessarily capture the most extreme cases having return periods longer than 100 years.</p><p>In this study, a method for generating an ensemble of synthetic low-pressure systems is being developed to investigate the extreme sea level heights on the Finnish coast of Baltic sea. As input parameters for the method, the point of origin, velocity of the center of the cyclone and depth of the pressure anomaly need to be given. Based on the input parameters, the method forms an idealized low-pressure system using a two-dimensional Gaussian function. In order to find extreme, but still reasonable values for the input parameters, cyclone tracks from ERA5 reanalysis data will be analysed.</p><p>The ensemble of synthetic low pressure systems (i.e. the wind and pressure data) is used as an input to a numerical sea level model. As a result, we have an ensemble of simulated sea levels, from which we can determine the properties of the ETCs that induce the highest sea levels on a given location on the coast. The preliminary simulation results show that this method works well, forming a basis for studies on extreme sea levels. </p><p> </p>


2019 ◽  
Vol 11 (3) ◽  
pp. 277 ◽  
Author(s):  
Suresh Palanisamy Vadivel ◽  
Duk-jin Kim ◽  
Jungkyo Jung ◽  
Yang-Ki Cho ◽  
Ki-Jong Han ◽  
...  

Vertical land motion at tide gauges influences sea level rise acceleration; this must be addressed for interpreting reliable sea level projections. In recent years, tide gauge records for the Eastern coast of Korea have revealed rapid increases in sea level rise compared with the global mean. Pohang Tide Gauge Station has shown a +3.1 cm/year sea level rise since 2013. This study aims to estimate the vertical land motion that influences relative sea level rise observations at Pohang by applying a multi-track Persistent Scatter Interferometric Synthetic Aperture Radar (PS-InSAR) time-series analysis to Sentinel-1 SAR data acquired during 2015–2017. The results, which were obtained at a high spatial resolution (10 m), indicate vertical ground motion of −2.55 cm/year at the Pohang Tide Gauge Station; this was validated by data from a collocated global positioning system (GPS) station. The subtraction of InSAR-derived subsidence rates from sea level rise at the Pohang Tide Gauge Station is 6 mm/year; thus, vertical land motion significantly dominates the sea level acceleration. Natural hazards related to the sea level rise are primarily assessed by relative sea level changes obtained from tide gauges; therefore, tide gauge records should be reviewed for rapid vertical land motion along the vulnerable coastal areas.


Sign in / Sign up

Export Citation Format

Share Document