Ozone profile measurements within, at the edge of, and outside the Antarctic polar vortex in the spring of 1988

1990 ◽  
Vol 95 (D7) ◽  
pp. 10023-10035 ◽  
Author(s):  
T. Deshler ◽  
D. J. Hofmann ◽  
J. V. Hereford

2003 ◽  
Vol 21 (11) ◽  
pp. 2175-2183 ◽  
Author(s):  
J. Ajtic ◽  
B. J. Connor ◽  
C. E. Randall ◽  
B. N. Lawrence ◽  
G. E. Bodeker ◽  
...  

Abstract. An ozonesonde profile over the Network for Detection of Stratospheric Change (NDSC) site at Lauder (45.0° S, 169.7° E), New Zealand, for 24 December 1998 showed atypically low ozone centered around 24 km altitude (600 K potential temperature). The origin of the anomaly is explained using reverse domain filling (RDF) calculations combined with a PV/O3 fitting technique applied to ozone measurements from the Polar Ozone and Aerosol Measurement (POAM) III instrument. The RDF calculations for two isentropic surfaces, 550 and 600 K, show that ozone-poor air from the Antarctic polar vortex reached New Zealand on 24–26 December 1998. The vortex air on the 550 K isentrope originated in the ozone hole region, unlike the air on 600 K where low ozone values were caused by dynamical effects. High-resolution ozone maps were generated, and their examination shows that a vortex remnant situated above New Zealand was the cause of the altered ozone profile on 24 December. The maps also illustrate mixing of the vortex filaments into southern midlatitudes, whereby the overall mid-latitude ozone levels were decreased.Key words. Atmospheric composition and structure (middle atmosphere composition and chemistry) – Meteorology and atmospheric dynamics (middle atmosphere dynamics)



2015 ◽  
Vol 15 (6) ◽  
pp. 3327-3338 ◽  
Author(s):  
T. Fytterer ◽  
M. G. Mlynczak ◽  
H. Nieder ◽  
K. Pérot ◽  
M. Sinnhuber ◽  
...  

Abstract. Measurements from 2002 to 2011 by three independent satellite instruments, namely MIPAS, SABER, and SMR on board the ENVISAT, TIMED, and Odin satellites are used to investigate the intra-seasonal variability of stratospheric and mesospheric O3 volume mixing ratio (vmr) inside the Antarctic polar vortex due to solar and geomagnetic activity. In this study, we individually analysed the relative O3 vmr variations between maximum and minimum conditions of a number of solar and geomagnetic indices (F10.7 cm solar radio flux, Ap index, ≥ 2 MeV electron flux). The indices are 26-day averages centred at 1 April, 1 May, and 1 June while O3 is based on 26-day running means from 1 April to 1 November at altitudes from 20 to 70 km. During solar quiet time from 2005 to 2010, the composite of all three instruments reveals an apparent negative O3 signal associated to the geomagnetic activity (Ap index) around 1 April, on average reaching amplitudes between −5 and −10% of the respective O3 background. The O3 response exceeds the significance level of 95% and propagates downwards throughout the polar winter from the stratopause down to ~ 25 km. These observed results are in good qualitative agreement with the O3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes particle impact ionisation.



2008 ◽  
Vol 8 (4) ◽  
pp. 16123-16173 ◽  
Author(s):  
E. V. Ivanova ◽  
C. M. Volk ◽  
O. Riediger ◽  
H. Klein ◽  
N. M. Sitnikov ◽  
...  

Abstract. In order to quantitatively analyse the chemical and dynamical evolution of the polar vortex it has proven extremely useful to work with coordinate systems that follow the vortex flow. We propose here a two-dimensional quasi-Lagrangian coordinate system {χi, Δχi}, based on the mixing ratio of a long-lived stratospheric trace gas i, and its systematic use with i = N2O, in order to describe the structure of a well-developed Antarctic polar vortex. In the coordinate system {χi, Δχi} the mixing ratio χi is the vertical coordinate and Δχi = χi(Θ)−χivort(Θ) is the meridional coordinate (χivort(Θ) being a vertical reference profile in the vortex core). The quasi-Lagrangian coordinates {χi, Δχi} persist for much longer time than standard isentropic coordinates, potential temperature Θ and equivalent latitude φe, do not require explicit reference to geographic space, and can be derived directly from high-resolution in situ measurements. They are therefore well-suited for studying the evolution of the Antarctic polar vortex throughout the polar winter with respect to the relevant chemical and microphysical processes. By using the introduced coordinate system {χN2O, ΔχN2O} we analyze the well-developed Antarctic vortex investigated during the APE-GAIA (Airborne Polar Experiment – Geophysica Aircraft in Antarctica – 1999) campaign (Carli et al., 2000). A criterion, which uses the local in-situ measurements of χi=χi(Θ) and attributes the inner vortex edge to a rapid change (δ-step) in the meridional profile of the mixing ratio χi, is developed to determine the (Antarctic) inner vortex edge. In turn, we suggest that the outer vortex edge of a well-developed Antarctic vortex can be attributed to the position of a local minimum of the χH2O gradient in the polar vortex area. For a well-developed Antarctic vortex, the ΔχN2O-parametrization of tracer-tracer relationships allows to distinguish the tracer inter-relationships in the vortex core, vortex boundary region and surf zone and to examine their meridional variation throughout these regions. This is illustrated by analyzing the tracer-tracer relationships χi : χN2O obtained from the in-situ data of the APE-GAIA campaign for i = CFC-11, CFC-12, H-1211 and SF6. A number of solitary anomalous points in the CFC-11 : N2O correlation, observed in the Antarctic vortex core, are interpreted in terms of small-scale cross-isentropic dispersion.



2005 ◽  
Vol 32 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
G. L. Manney ◽  
M. L. Santee ◽  
N. J. Livesey ◽  
L. Froidevaux ◽  
W. G. Read ◽  
...  




2005 ◽  
Vol 62 (3) ◽  
pp. 860-870 ◽  
Author(s):  
Jens-Uwe Grooß ◽  
Paul Konopka ◽  
Rolf Müller

Abstract In September 2002, the Antarctic polar vortex was disturbed, and it split into two parts caused by an unusually early stratospheric major warming. This study discusses the chemical consequences of this event using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The chemical initialization of the simulation is based on Halogen Occultation Experiment (HALOE) measurements. Because of its Lagrangian nature, CLaMS is well suited for simulating the small-scale filaments that evolve during this period. Filaments of vortex origin in the midlatitudes were observed by HALOE several times in October 2002. The results of the simulation agree well with these HALOE observations. The simulation further indicates a very rapid chlorine deactivation that is triggered by the warming associated with the split of the vortex. Correspondingly, the ozone depletion rates in the polar vortex parts rapidly decrease to zero. Outside the polar vortex, where air masses of midlatitude origin were transported to the polar region, the simulation shows high ozone depletion rates at the 700-K level caused mainly by NOx chemistry. Owing to the major warming in September 2002, ozone-poor air masses were transported into the midlatitudes and caused a decrease of midlatitude ozone by 5%–15%, depending on altitude. Besides this dilution effect, there was no significant additional chemical effect. The net chemical ozone depletion in air masses of vortex origin was low and did not differ significantly from that of midlatitude air, in spite of the different chemical composition of the two types of air masses.



1997 ◽  
Vol 102 (D6) ◽  
pp. 6765-6773 ◽  
Author(s):  
F. Paparella ◽  
A. Babiano ◽  
C. Basdevant ◽  
A. Provenzale ◽  
P. Tanga


1997 ◽  
Vol 102 (D1) ◽  
pp. 1229-1238 ◽  
Author(s):  
Wiel M. F. Wauben ◽  
Richard Bintanja ◽  
Peter F. J. van Velthoven ◽  
Hennie Kelder




Sign in / Sign up

Export Citation Format

Share Document