First Lidar Observations of Quasi‐Biennial Oscillation‐Induced Interannual Variations of Gravity Wave Potential Energy Density at McMurdo via a Modulation of the Antarctic Polar Vortex

2020 ◽  
Vol 125 (16) ◽  
Author(s):  
Zimu Li ◽  
Xinzhao Chu ◽  
V. Lynn Harvey ◽  
Jackson Jandreau ◽  
Xian Lu ◽  
...  
2020 ◽  
Vol 20 (11) ◽  
pp. 6259-6271
Author(s):  
Emily M. Gordon ◽  
Annika Seppälä ◽  
Johanna Tamminen

Abstract. Observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used to study the effect of energetic particle precipitation (EPP, as proxied by the geomagnetic activity index, Ap) on the Antarctic stratospheric NO2 column in late winter–spring (August–December) during the period from 2005 to 2017. We show that the polar (60–90∘ S) stratospheric NO2 column is significantly correlated with EPP throughout the Antarctic spring, until the breakdown of the polar vortex in November. The strongest correlation takes place during years with the easterly phase of the quasi-biennial oscillation (QBO). The QBO modulation may be a combination of different effects: the QBO is known to influence the amount of the primary NOx source (N2O) via transport from the Equator to the polar region; and the QBO phase also affects polar temperatures, which may provide a link to the amount of denitrification occurring in the polar vortex. We find some support for the latter in an analysis of temperature and HNO3 observations from the Microwave Limb Sounder (MLS, on Aura). Our results suggest that once the background effect of the QBO is accounted for, the NOx produced by EPP significantly contributes to the stratospheric NO2 column at the time and altitudes when the ozone hole is present in the Antarctic stratosphere. Based on our findings, and the known role of NOx as a catalyst for ozone loss, we propose that as chlorine activation continues to decrease in the Antarctic stratosphere, the total EPP-NOx needs be accounted for in predictions of Antarctic ozone recovery.


2021 ◽  
Author(s):  
Audrey Lecouffe ◽  
Sophie Godin-Beekmann ◽  
Andrea Pazmiño ◽  
Alain Hauchecorne

<p>The stratospheric polar vortex in the Southern Hemisphere plays an important role in the intensity of the stratospheric ozone destruction during austral spring, which started in the late 1970s. The so-called ozone hole has in turn influenced the evolution of weather patterns in the Southern Hemisphere in the last decades (WMO, 2018). The Northern Hemisphere polar vortex is less stable because of larger dynamical activity in winter. It is thus less cold and polar arctic ozone losses are less important. The seasonal and interannual evolution of the polar vortex in both hemispheres has been analyzed using meteorological fields from the European Center for Meteorology Weather Forecasts ERA-Interim reanalyses and the MIMOSA model (Modélisation Isentrope du transport Méso-échelle de l’Ozone Stratosphérique par Advection, Hauchecorne et al., 2002). This model provides high spatial resolution potential vorticity (PV) and equivalent latitude fields at several isentropic levels (675K, 550K and 475K) that are used to evaluate the temporal evolution of the polar vortex edge. The edge of the vortex is computed on isentropic surfaces from the wind and gradient of PV as a function of equivalent latitude (e.g. Nash et al, 1996; Godin et al., 2001). On an interannual scale, the signature of some typical forcings driving stratospheric natural variability such as the 11-year solar cycle, the quasi-biennial oscillation (QBO), and El Niño Southern Oscillation (ENSO) is evaluated. The study includes analysis of the onset and breakup dates of the polar vortex, which are determined from the wind field along the vortex edge. Several threshold values, such as 15.2m/s, 20m/s and 25m/s following Akiyoshi et al. (2009) are used. Results on the seasonal and interannual evolution of the intensity and position of the vortex edge, as well as the onset and breakup dates of the Southern and Northern polar vortex edge over the 1979 – 2020 period will be shown.</p><p><strong>References:</strong></p><ul><li>Akiyoshi, H., Zhou, L., Yamashita, Y., Sakamoto, K., Yoshiki, M., Nagashima, T., Takahashi, M., Kurokawa, J., Takigawa, M., and Imamura, T. A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios, Journal ofGeophysical Research: Atmospheres, 114, 2009.</li> <li>Godin S., V. Bergeret, S. Bekki, C. David, G. Mégie, Study of the interannual ozone loss and the permeability of the Antarctic Polar Vortex from long-term aerosol and ozone lidar measurements in Dumont d’Urville (66.4◦S, 140◦E), J. Geophys. Res., 106, 1311-1330, 2001.</li> <li>Hauchecorne, A., S. Godin, M. Marchand, B. Hesse, and C. Souprayen, Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity, J. Geophys. Res., 107 (D20), 8289, doi:10.1029/2001JD000491, 2002.</li> <li>Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R. (1996), An objective determination of the polar vortex using Ertel’s potential vorticity, Journal of geophysical research, VOL.101(D5), 9471- 9478</li> <li>World Meteorological Organization, Global Ozone Research and Monitoring Project – Report No. 58, 2018.</li> </ul>


Author(s):  
Claudio Rodas ◽  
Manuel Pulido

AbstractRay path theory is an asymptotic approximation to the wave equations. It represents efficiently gravity wave propagation in non-uniform background flows so that it is useful to develop schemes of gravity wave effects in general circulation models. One of the main limitations of ray path theory to be applied in realistic flows is in caustics where rays intersect and the ray solution has a singularity. Gaussian beam approximation is a higher-order asymptotic ray path approximation which considers neighboring rays to the central one and thus it is free of the singularities produced by caustics. A previous implementation of the Gaussian beam approximation assumes a horizontally uniform flow. In this work, we extend the Gaussian beam approximation to include horizontally nonuniform flows. Under these conditions the wave packet can undergo horizontal wave refraction producing changes in the horizontal wavenumber, which affects the ray path as well as the ray tube cross-sectional area and so the wave amplitude via wave action conservation. As an evaluation of the Gaussian beam approximation in horizontally nonuniform flows a series of proof-of-concept experiments is conducted comparing the approximation with the linear wave solution given by the WRF model. A very good agreement in the wave field is found. An evaluation is conducted with conditions that mimic the Antarctic polar vortex and the orography of the Southern flank of South America. The Gaussian beam approximation nicely reproduces the expected asymmetry of the wave field. A much stronger disturbance propagates towards higher latitudes (polar vortex) compared to lower latitudes.


2019 ◽  
Author(s):  
Emily Gordon ◽  
Annika Seppälä ◽  
Johanna Tamminen

Abstract. Observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used to study the effect of energetic particle precipitation (EPP, as proxied by the geomagnetic activity index Ap) on the Antarctic stratospheric NO2 column in late winter-spring (Aug-Dec) during the years 2005–2017. We show that the polar (60° S–90° S) stratospheric NO2 column is significantly correlated with EPP throughout the Antarctic spring, until the breakdown of the polar vortex in November. The strongest correlation takes place during years with easterly phase of the quasi-biennial oscillation (QBO). We propose that the QBO affects the polar springtime EPP-NOx in two ways: firstly by modulating the amount of the primary NOx source, N2O, transported to the polar region. Secondly, the QBO affects the temperature of the polar vortex and thus the amount of denitrification occurring in the polar vortex, also verified from HNO3 observations from the Microwave Limb Sounder (MLS/Aura). Our results suggest that NOx produced by EPP significantly contributes to the stratospheric NO2 column at the time when the ozone hole is present in the Antarctic stratosphere. Based on our findings, we recommend that as chlorine activation continues to decrease in the Antarctic stratosphere, the total EPP-NOx should be accounted for in predictions of Antarctic ozone recovery.


2015 ◽  
Vol 15 (6) ◽  
pp. 3327-3338 ◽  
Author(s):  
T. Fytterer ◽  
M. G. Mlynczak ◽  
H. Nieder ◽  
K. Pérot ◽  
M. Sinnhuber ◽  
...  

Abstract. Measurements from 2002 to 2011 by three independent satellite instruments, namely MIPAS, SABER, and SMR on board the ENVISAT, TIMED, and Odin satellites are used to investigate the intra-seasonal variability of stratospheric and mesospheric O3 volume mixing ratio (vmr) inside the Antarctic polar vortex due to solar and geomagnetic activity. In this study, we individually analysed the relative O3 vmr variations between maximum and minimum conditions of a number of solar and geomagnetic indices (F10.7 cm solar radio flux, Ap index, ≥ 2 MeV electron flux). The indices are 26-day averages centred at 1 April, 1 May, and 1 June while O3 is based on 26-day running means from 1 April to 1 November at altitudes from 20 to 70 km. During solar quiet time from 2005 to 2010, the composite of all three instruments reveals an apparent negative O3 signal associated to the geomagnetic activity (Ap index) around 1 April, on average reaching amplitudes between −5 and −10% of the respective O3 background. The O3 response exceeds the significance level of 95% and propagates downwards throughout the polar winter from the stratopause down to ~ 25 km. These observed results are in good qualitative agreement with the O3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes particle impact ionisation.


2017 ◽  
Vol 145 (10) ◽  
pp. 4249-4275 ◽  
Author(s):  
Sonja Gisinger ◽  
Andreas Dörnbrack ◽  
Vivien Matthias ◽  
James D. Doyle ◽  
Stephen D. Eckermann ◽  
...  

This paper describes the results of a comprehensive analysis of the atmospheric conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign in austral winter 2014. Different datasets and diagnostics are combined to characterize the background atmosphere from the troposphere to the upper mesosphere. How weather regimes and the atmospheric state compare to climatological conditions is reported upon and how they relate to the airborne and ground-based gravity wave observations is also explored. Key results of this study are the dominance of tropospheric blocking situations and low-level southwesterly flows over New Zealand during June–August 2014. A varying tropopause inversion layer was found to be connected to varying vertical energy fluxes and is, therefore, an important feature with respect to wave reflection. The subtropical jet was frequently diverted south from its climatological position at 30°S and was most often involved in strong forcing events of mountain waves at the Southern Alps. The polar front jet was typically responsible for moderate and weak tropospheric forcing of mountain waves. The stratospheric planetary wave activity amplified in July leading to a displacement of the Antarctic polar vortex. This reduced the stratospheric wind minimum by about 10 m s−1 above New Zealand making breaking of large-amplitude gravity waves more likely. Satellite observations in the upper stratosphere revealed that orographic gravity wave variances for 2014 were largest in May–July (i.e., the period of the DEEPWAVE field phase).


2017 ◽  
Vol 122 (15) ◽  
pp. 7869-7880 ◽  
Author(s):  
Masaru Kogure ◽  
Takuji Nakamura ◽  
Mitsumu K. Ejiri ◽  
Takanori Nishiyama ◽  
Yoshihiro Tomikawa ◽  
...  

Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2011. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


2008 ◽  
Vol 8 (4) ◽  
pp. 16123-16173 ◽  
Author(s):  
E. V. Ivanova ◽  
C. M. Volk ◽  
O. Riediger ◽  
H. Klein ◽  
N. M. Sitnikov ◽  
...  

Abstract. In order to quantitatively analyse the chemical and dynamical evolution of the polar vortex it has proven extremely useful to work with coordinate systems that follow the vortex flow. We propose here a two-dimensional quasi-Lagrangian coordinate system {χi, Δχi}, based on the mixing ratio of a long-lived stratospheric trace gas i, and its systematic use with i = N2O, in order to describe the structure of a well-developed Antarctic polar vortex. In the coordinate system {χi, Δχi} the mixing ratio χi is the vertical coordinate and Δχi = χi(Θ)−χivort(Θ) is the meridional coordinate (χivort(Θ) being a vertical reference profile in the vortex core). The quasi-Lagrangian coordinates {χi, Δχi} persist for much longer time than standard isentropic coordinates, potential temperature Θ and equivalent latitude φe, do not require explicit reference to geographic space, and can be derived directly from high-resolution in situ measurements. They are therefore well-suited for studying the evolution of the Antarctic polar vortex throughout the polar winter with respect to the relevant chemical and microphysical processes. By using the introduced coordinate system {χN2O, ΔχN2O} we analyze the well-developed Antarctic vortex investigated during the APE-GAIA (Airborne Polar Experiment – Geophysica Aircraft in Antarctica – 1999) campaign (Carli et al., 2000). A criterion, which uses the local in-situ measurements of χi=χi(Θ) and attributes the inner vortex edge to a rapid change (δ-step) in the meridional profile of the mixing ratio χi, is developed to determine the (Antarctic) inner vortex edge. In turn, we suggest that the outer vortex edge of a well-developed Antarctic vortex can be attributed to the position of a local minimum of the χH2O gradient in the polar vortex area. For a well-developed Antarctic vortex, the ΔχN2O-parametrization of tracer-tracer relationships allows to distinguish the tracer inter-relationships in the vortex core, vortex boundary region and surf zone and to examine their meridional variation throughout these regions. This is illustrated by analyzing the tracer-tracer relationships χi : χN2O obtained from the in-situ data of the APE-GAIA campaign for i = CFC-11, CFC-12, H-1211 and SF6. A number of solitary anomalous points in the CFC-11 : N2O correlation, observed in the Antarctic vortex core, are interpreted in terms of small-scale cross-isentropic dispersion.


2005 ◽  
Vol 32 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
G. L. Manney ◽  
M. L. Santee ◽  
N. J. Livesey ◽  
L. Froidevaux ◽  
W. G. Read ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document