Plasma Waves in the Shock Interaction Regions at Comet Giacobini-Zinner

2013 ◽  
pp. 921-924
Author(s):  
C.F. Kennel ◽  
F.V. Coroniti ◽  
F.L. Scarf ◽  
B.T. Tsurutani ◽  
E.J. Smith ◽  
...  
1986 ◽  
Vol 13 (9) ◽  
pp. 921-924 ◽  
Author(s):  
C. F. Kennel ◽  
F. V. Coroniti ◽  
F. L. Scarf ◽  
B. T. Tsurutani ◽  
E. J. Smith ◽  
...  

2001 ◽  
Author(s):  
Michael S. Holden ◽  
Timothy P. Wadhams ◽  
Gregory J. Smolinski ◽  
Ronald A. Parker ◽  
John. K. Harvey

Shock Waves ◽  
2021 ◽  
Author(s):  
C. Garbacz ◽  
W. T. Maier ◽  
J. B. Scoggins ◽  
T. D. Economon ◽  
T. Magin ◽  
...  

AbstractThe present study aims at providing insights into shock wave interference patterns in gas flows when a mixture different than air is considered. High-energy non-equilibrium flows of air and $$\hbox {CO}_2$$ CO 2 –$$\hbox {N}_2$$ N 2 over a double-wedge geometry are studied numerically. The impact of freestream temperature on the non-equilibrium shock interaction patterns is investigated by simulating two different sets of freestream conditions. To this purpose, the SU2 solver has been extended to account for the conservation of chemical species as well as multiple energies and coupled to the Mutation++ library (Multicomponent Thermodynamic And Transport properties for IONized gases in C++) that provides all the necessary thermochemical properties of the mixture and chemical species. An analysis of the shock interference patterns is presented with respect to the existing taxonomy of interactions. A comparison between calorically perfect ideal gas and non-equilibrium simulations confirms that non-equilibrium effects greatly influence the shock interaction patterns. When thermochemical relaxation is considered, a type VI interaction is obtained for the $$\hbox {CO}_2$$ CO 2 -dominated flow, for both freestream temperatures of 300 K and 1000 K; for air, a type V six-shock interaction and a type VI interaction are obtained, respectively. We conclude that the increase in freestream temperature has a large impact on the shock interaction pattern of the air flow, whereas for the $$\hbox {CO}_2$$ CO 2 –$$\hbox {N}_2$$ N 2 flow the pattern does not change.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Gabriele ◽  
Mattia Udina ◽  
Lara Benfatto

AbstractThe hallmark of superconductivity is the rigidity of the quantum-mechanical phase of electrons, responsible for superfluid behavior and Meissner effect. The strength of the phase stiffness is set by the Josephson coupling, which is strongly anisotropic in layered cuprates. So far, THz light pulses have been used to achieve non-linear control of the out-of-plane Josephson plasma mode, whose frequency lies in the THz range. However, the high-energy in-plane plasma mode has been considered insensitive to THz pumping. Here, we show that THz driving of both low-frequency and high-frequency plasma waves is possible via a general two-plasmon excitation mechanism. The anisotropy of the Josephson couplings leads to markedly different thermal effects for the out-of-plane and in-plane response, linking in both cases the emergence of non-linear photonics across Tc to the superfluid stiffness. Our results show that THz light pulses represent a preferential knob to selectively drive phase excitations in unconventional superconductors.


Sign in / Sign up

Export Citation Format

Share Document