Absence of overt iron overload in two individuals compound heterozygotes for a 22 base pair deletion of exon 2 and the C282Y missense mutation of the HFE gene

2003 ◽  
Vol 63 (2) ◽  
pp. 163-165 ◽  
1996 ◽  
Vol 75 (04) ◽  
pp. 546-550 ◽  
Author(s):  
Marianne Schwartz ◽  
Albert Békássy ◽  
Mikael Donnér ◽  
Thomas Hertel ◽  
Stefan Hreidarson ◽  
...  

SummaryTwelve different mutations in the WASP gene were found in twelve unrelated families with Wiskott-Aldrich syndrome (WAS) or X-linked thrombocytopenia (XLT). Four frameshift, one splice, one nonsense mutation, and one 18-base-pair deletion were detected in seven patients with WAS. Only missense mutations were found in five patients diagnosed as having XLT. One of the nucleotide substitutions in exon 2 (codon 86) results in an Arg to Cys replacement. Two other nucleotide substitutions in this codon, R86L and R86H, have been reported previously, both giving rise to typical WAS symptoms, indicating a mutational hot spot in this codon. The finding of mutations in the WASP gene in both WAS and XLT gives further evidence of these syndromes being allelic. The relatively small size of the WASP gene facilitates the detection of mutations and a reliable diagnosis of both carriers and affected fetuses in families with WAS or XLT.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1859-1859
Author(s):  
Patricia Aguilar-Martinez ◽  
Severine Cunat ◽  
Fabienne Becker ◽  
Francois Blanc ◽  
Marlene Nourrit ◽  
...  

Abstract Introduction: Homozygozity for the p.Cys282Tyr (C282Y) mutation of the HFE gene is the main genotype associated with the common form of adult hereditary hemochromatosis. C282Y carriers do not usually develop iron overload, unless they have additional risk factors such as liver diseases, a dysmetabolic syndrome or an associated genetic defect. The commonest is the compound heterozygous state for C282Y and the widespread p.His63Asp (H63D) variant allele. However, a few rare HFE mutations can be found on the 6th chromosome in trans, some of which are of clinical interest to fully understand the disorder. Patients and Methods: We recently investigated four C282Y carrier patients with unusually high iron parameters, including increased levels of serum ferritin (SF), high transferrin saturation (TS) and high iron liver content measured by MRI. They were males, aged 37, 40, 42, 47 at diagnosis. Two brothers (aged 40 and 42) were referred separately. The HFE genotype, including the determination of the C282Y, H63D and S65C mutations was performed using PCR-RFLP. HFE sequencing was undertaken using the previously described SCA method (1). Sequencing of other genes (namely, HAMP, HJV/HFE2, SLC40A1, TFR2) was possibly performed in a last step using the same method. Results: We identified three rare HFE mutant alleles, two of which are undescribed, in the four studied patients. One patient bore a 13 nucleotide-deletion in exon 6 (c.[1022_1034del13], p.His341_Ala345>LeufsX119), which is predicted to lead to an abnormal, elongated protein. The two brothers had a substitution of the last nucleotide of exon 2 (c.[340G>A], p.Glu114Lys) that may modify the splicing of the 2d intron. The third patient, who bore an insertion of a A in exon 4 (c.[794dupA],p.[trp267LeufsX80]), has already been reported (1). Discussion: A vast majority of C282Y carriers will not develop iron overload and can be reassured. However, a careful step by step strategy at the clinical and genetic levels may allow to correctly identify those patients deserving further investigation. First, clinical examination and the assessment of iron parameters (SF and TS) allow identifying C282Y heterozygotes with an abnormal iron status. Once extrinsic factors such as heavy alcohol intake, virus or a dysmetabolic syndrome have been excluded, MRI is very useful to authenticate a high liver iron content. Second, HFE genotype must first exclude the presence of the H63D mutation. Compound heterozygozity for C282Y and H63D, a very widespread condition in our area, is usually associated with mild iron overload. Third, HFE sequencing can be undertaken and may identify new HFE variants as described here. The two novel mutations, a frameshift modifying the composition and the length of the C terminal end of the HFE protein and a substitution located at the last base of an exon, are likely to lead to an impaired function of HFE in association with the C282Y mutant. However, it is noteworthy that three of the four patients were diagnosed relatively late, after the 4th decade, as it is the case for C282Y homozygotes. Three further unrelated patients are currently under investigation in our laboratory for a similar clinical presentation. Finally, it can be noted that in those patients who will not have a HFE gene mutant identified, analysis of other genes implicated in iron overload must be performed to search for digenism or multigenism. None of our investigated patients had an additional gene abnormality.


Blood ◽  
2001 ◽  
Vol 98 (2) ◽  
pp. 358-367 ◽  
Author(s):  
Richard van Wijk ◽  
Karel Nieuwenhuis ◽  
Marijke van den Berg ◽  
Eric G. Huizinga ◽  
Brenda B. van der Meijden ◽  
...  

Coagulation factor V (FV) plays an important role in maintaining the hemostatic balance in both the formation of thrombin in the procoagulant pathway as well as in the protein C anticoagulant pathway. FV deficiency is a rare bleeding disorder with variable phenotypic expression. Little is known about the molecular basis underlying this disease. This study identified 5 novel mutations associated with FV deficiency in 3 patients with severe FV deficiency but different clinical expression and 2 unaffected carriers. Four mutations led to a premature termination codon either by a nonsense mutation (single-letter amino acid codes): A1102T, K310Term. (FV Amersfoort) and C2491T, Q773Term. (FV Casablanca) or a frameshift: an 8–base pair deletion between nucleotides 1130 and 1139 (FV Seoul1) and a 1–base pair deletion between nucleotides 4291 and 4294 (FV Utrecht). One mutation was a novel missense mutation: T1927C, C585R (FV Nijkerk), resulting in the absence of mutant protein despite normal transcription to RNA. Most likely, an arginine at this position disrupts the hydrophobic interior of the FV A2 domain. The sixth detected mutation was a previously reported missense mutation: A5279G, Y1702C (FV Seoul2). In all cases, the presence of the mutation was associated with type I FV deficiency. Identifying the molecular basis of mutations underlying this rare coagulation disorder will help to obtain more insight into the mechanisms involved in the variable clinical phenotype of patients with FV deficiency.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 695-697 ◽  
Author(s):  
Vinod Devalia ◽  
Kymberley Carter ◽  
Ann P. Walker ◽  
Stephen J. Perkins ◽  
Mark Worwood ◽  
...  

Abstract We describe a family with autosomal dominant inheritance of increased body iron stores characterized by raised serum ferritin concentration and normal transferrin saturation. Liver biopsy showed iron deposition in Kupffer cells without fibrosis. The clinical features of HFE-related hemochromatosis were absent, as were the Cys282Tyr and His63Asp mutations. Venesection therapy was poorly tolerated, suggesting a defect in iron release from reticuloendothelial stores. A 3–base pair deletion in exon 5 of the ferroportin 1 gene (SLC11A3) predicting Val162 deletion was found in affected members, but not in unaffected individuals or in 100 control subjects. Consensus structural predictions of the transmembrane helices showed that the deletion is in the extracellular loop between the third and fourth predicted transmembrane helices and lies within a spatial cluster of other known ferroportin 1 mutations. These results indicate that this extracellular cluster is functionally important for iron transport, and its disruption leads to iron overload.


2020 ◽  
Author(s):  
Hiu-Gwen Tsang ◽  
Simon Lillico ◽  
Christopher Proudfoot ◽  
Mary E. B. McCulloch ◽  
Greg Markby ◽  
...  

AbstractThis paper describes a genome editing project using CRISPR-Cas9. The objective was to create a large animal model of human Marfan syndrome by targeting the FBN1 gene of the pig, Sus scrofa, using a single guide and non-homologous end joining which was expected to create short insertion or deletion mutations at the 5’ end of the gene. The editing successfully created a five base pair deletion in exon 2 of FBN1, which was homozygous in two animals. However, the phenotype of these piglets was unexpected, since they showed none of the signs consistent with Marfan syndrome but both suffered extreme hydrops fetalis with a large amount of fluid located under the skin and in the abdomen. One of the edited piglets was stillborn and the other was euthanised at birth on welfare grounds. It is likely that this result was due to unanticipated on- or off-target mutations, possibly in the GLDN gene 3 megabases away from FBN1. This result provides more evidence for unexpected outcomes of CRISPR- Cas9 gene editing and supports the proposal that all genome edited individuals should be subjected to strategies to track the CRISPR footprint, such as whole genome sequencing, before being used for further experimentation or in clinical applications.


Genetika ◽  
2008 ◽  
Vol 40 (1) ◽  
pp. 51-65
Author(s):  
Adriane Menssen ◽  
Peter Peterson

Two En/Spm-transposable element alleles of the A1 locus in maize (Zea mays) are described. One of the alleles is al-m (papu), (PETERSON, 1961). The distinctive phenotype of this allele is characterized with pale and purple sectoring amidst large areas of no sectoring. The other allele, al-m (Au), appears full colored but is heavily mutating and expresses large colorless areas. These two alleles differ in the frequency of derivative products [al-m( papu)-colorless and pale exceptions vs al- m(Au)-mostly colorless exceptions]. A molecular description is provided in an attempt to explain these differences in phenotypes and derivative products. A nine-base-pair deficiency in Exon 2 of the A1 locus of the a1- m (papu) allele originated following the origin of this allele and this deficiency is likely responsible for the differential phenotypes. The possible origin of this nine-base-pair deletion is discussed. .


2002 ◽  
Vol 36 ◽  
pp. 182
Author(s):  
V. Devalia ◽  
K. Carter ◽  
A.P. Walker ◽  
S.J. Perkins ◽  
M. Worwood ◽  
...  

2002 ◽  
Vol 119 (2) ◽  
pp. 539-546 ◽  
Author(s):  
Mario Cazzola ◽  
Laura Cremonesi ◽  
Maria Papaioannou ◽  
Nadia Soriani ◽  
Anna Kioumi ◽  
...  

1991 ◽  
Vol 66 (04) ◽  
pp. 500-504 ◽  
Author(s):  
H Peretz ◽  
U Seligsohn ◽  
E Zwang ◽  
B S Coller ◽  
P J Newman

SummarySevere Glanzmann's thrombasthenia is relatively frequent in Iraqi-Jews and Arabs residing in Israel. We have recently described the mutations responsible for the disease in Iraqi-Jews – an 11 base pair deletion in exon 12 of the glycoprotein IIIa gene, and in Arabs – a 13 base pair deletion at the AG acceptor splice site of exon 4 on the glycoprotein IIb gene. In this communication we show that the Iraqi-Jewish mutation can be identified directly by polymerase chain reaction and gel electrophoresis. With specially designed oligonucleotide primers encompassing the mutation site, an 80 base pair segment amplified in healthy controls was clearly distinguished from the 69 base pair segment produced in patients. Patients from 11 unrelated Iraqi-Jewish families had the same mutation. The Arab mutation was identified by first amplifying a DNA segment consisting of 312 base pairs in controls and of 299 base pairs in patients, and then digestion by a restriction enzyme Stu-1, which recognizes a site that is absent in the mutant gene. In controls the 312 bp segment was digested into 235 and 77 bp fragments, while in patients there was no change in the size of the amplified 299 bp segment. The mutation was found in patients from 3 out of 5 unrelated Arab families. Both Iraqi-Jewish and Arab mutations were detectable in DNA extracted from blood and urine samples. The described simple methods of identifying the mutations should be useful for detection of the numerous potential carriers among the affected kindreds and for prenatal diagnosis using DNA extracted from chorionic villi samples.


Sign in / Sign up

Export Citation Format

Share Document