Mutation Spectrum in Patients with Wiskott-Aldrich Syndrome and X-linked Thrombocytopenia: Identification of Twelve Different Mutations in the WASP Gene

1996 ◽  
Vol 75 (04) ◽  
pp. 546-550 ◽  
Author(s):  
Marianne Schwartz ◽  
Albert Békássy ◽  
Mikael Donnér ◽  
Thomas Hertel ◽  
Stefan Hreidarson ◽  
...  

SummaryTwelve different mutations in the WASP gene were found in twelve unrelated families with Wiskott-Aldrich syndrome (WAS) or X-linked thrombocytopenia (XLT). Four frameshift, one splice, one nonsense mutation, and one 18-base-pair deletion were detected in seven patients with WAS. Only missense mutations were found in five patients diagnosed as having XLT. One of the nucleotide substitutions in exon 2 (codon 86) results in an Arg to Cys replacement. Two other nucleotide substitutions in this codon, R86L and R86H, have been reported previously, both giving rise to typical WAS symptoms, indicating a mutational hot spot in this codon. The finding of mutations in the WASP gene in both WAS and XLT gives further evidence of these syndromes being allelic. The relatively small size of the WASP gene facilitates the detection of mutations and a reliable diagnosis of both carriers and affected fetuses in families with WAS or XLT.

Blood ◽  
1995 ◽  
Vol 86 (10) ◽  
pp. 3797-3804 ◽  
Author(s):  
Q Zhu ◽  
M Zhang ◽  
RM Blaese ◽  
JM Derry ◽  
A Junker ◽  
...  

The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, small platelets, eczema, recurrent infections, and immunodeficiency. Besides the classic WAS phenotype, there is a group of patients with congenital X-linked thrombocytopenia (XLT) who have small platelets but only transient eczema, if any, and minimal immune deficiency. Because the gene responsible for WAS has been sequenced, it was possible to correlate the WAS phenotypes with WAS gene mutations. Using a fingerprinting screening technique, we determined the approximate location of the mutation in 13 unrelated WAS patients with mild to severe clinical symptoms. Direct sequence analysis of cDNA and genomic DNA obtained from patient-derived cell lines showed 12 unique mutations distributed throughout the WAS gene, including insertions, deletions, and point mutations resulting in amino acid substitutions, termination, exon skipping, or splicing defects. Of 4 unrelated patients with the XLT phenotype, 3 had missense mutations affecting exon 2 and 1 had a splice-site mutation affecting exon 9. Patients with classic WAS had more complex mutations, resulting in termination codons, frameshift, and early termination. These findings provide direct evidence that XLT and WAS are caused by mutations of the same gene and suggest that severe clinical phenotypes are associated with complex mutations.


Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2680-2689 ◽  
Author(s):  
Qili Zhu ◽  
Chiaki Watanabe ◽  
Ting Liu ◽  
Diane Hollenbaugh ◽  
R. Michael Blaese ◽  
...  

Abstract Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT), caused by mutations of the WAS protein (WASP) gene, represent different phenotypes of the same disease. To demonstrate a phenotype/genotype correlation, we determined WASP gene mutations in 48 unrelated WAS families. Mutations included missense (20 families) and nonsense (eight) mutations located mostly in exons 1 to 4, and splice-site mutations (seven) and deletions and insertions (13) located preferentially in exons 7 to 11. Both genomic DNA and cDNA were sequenced and WASP expression was measured in cell lysates using peptide-specific rabbit anti-WASP antibodies. WASP was expressed in hematopoietic cell lines including bone marrow–derived CD34+ cells. Missense mutations located in exons 1 to 3 caused mild disease in all but one family and permitted WASP expression, although frequently at decreased concentration. Missense mutations affecting exon 4 were associated with classic WAS and, with one exception, barely detectable WASP. Nonsense mutations caused classic WAS and lack of protein. Insertions, deletions, and splice-site mutations resulted in classic WAS and absent, unstable, truncated, or multiply spliced protein. Using affinity precipitation, WASP was found to bind to Src SH3-containing proteins Fyn, Lck, PLC-γ, and Grb2, and mutated WASP, if expressed, was able to bind to Fyn-glutathione S-transferase (GST) fusion protein. We conclude that missense mutations affecting the PH domain (exons 1 to 3) of WASP inhibit less important functions of the protein and result in a mild phenotype, and that missense mutations affecting exon 4 and complex mutations affecting the 3′ portion of WASP interfere with crucial functions of the protein and cause classic WAS.


2020 ◽  
Author(s):  
Hiu-Gwen Tsang ◽  
Simon Lillico ◽  
Christopher Proudfoot ◽  
Mary E. B. McCulloch ◽  
Greg Markby ◽  
...  

AbstractThis paper describes a genome editing project using CRISPR-Cas9. The objective was to create a large animal model of human Marfan syndrome by targeting the FBN1 gene of the pig, Sus scrofa, using a single guide and non-homologous end joining which was expected to create short insertion or deletion mutations at the 5’ end of the gene. The editing successfully created a five base pair deletion in exon 2 of FBN1, which was homozygous in two animals. However, the phenotype of these piglets was unexpected, since they showed none of the signs consistent with Marfan syndrome but both suffered extreme hydrops fetalis with a large amount of fluid located under the skin and in the abdomen. One of the edited piglets was stillborn and the other was euthanised at birth on welfare grounds. It is likely that this result was due to unanticipated on- or off-target mutations, possibly in the GLDN gene 3 megabases away from FBN1. This result provides more evidence for unexpected outcomes of CRISPR- Cas9 gene editing and supports the proposal that all genome edited individuals should be subjected to strategies to track the CRISPR footprint, such as whole genome sequencing, before being used for further experimentation or in clinical applications.


Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2680-2689 ◽  
Author(s):  
Qili Zhu ◽  
Chiaki Watanabe ◽  
Ting Liu ◽  
Diane Hollenbaugh ◽  
R. Michael Blaese ◽  
...  

Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT), caused by mutations of the WAS protein (WASP) gene, represent different phenotypes of the same disease. To demonstrate a phenotype/genotype correlation, we determined WASP gene mutations in 48 unrelated WAS families. Mutations included missense (20 families) and nonsense (eight) mutations located mostly in exons 1 to 4, and splice-site mutations (seven) and deletions and insertions (13) located preferentially in exons 7 to 11. Both genomic DNA and cDNA were sequenced and WASP expression was measured in cell lysates using peptide-specific rabbit anti-WASP antibodies. WASP was expressed in hematopoietic cell lines including bone marrow–derived CD34+ cells. Missense mutations located in exons 1 to 3 caused mild disease in all but one family and permitted WASP expression, although frequently at decreased concentration. Missense mutations affecting exon 4 were associated with classic WAS and, with one exception, barely detectable WASP. Nonsense mutations caused classic WAS and lack of protein. Insertions, deletions, and splice-site mutations resulted in classic WAS and absent, unstable, truncated, or multiply spliced protein. Using affinity precipitation, WASP was found to bind to Src SH3-containing proteins Fyn, Lck, PLC-γ, and Grb2, and mutated WASP, if expressed, was able to bind to Fyn-glutathione S-transferase (GST) fusion protein. We conclude that missense mutations affecting the PH domain (exons 1 to 3) of WASP inhibit less important functions of the protein and result in a mild phenotype, and that missense mutations affecting exon 4 and complex mutations affecting the 3′ portion of WASP interfere with crucial functions of the protein and cause classic WAS.


Author(s):  
Fatemeh Talebi ◽  
Mohammad Mehdi Heidari ◽  
Mehri Khatami ◽  
Mahtab Ordooei

Background: Congenital central hypothyroidism (CCH) is a rare autosomal recessive disease caused by mutations in the thyroid-stimulating hormone β subunit (TSHβ) gene. Since patients with CCH do not experience increased serum levels of TSH, the diagnosis is usually delayed, which leads to negative consequences in the neonatal TSH screening. Genetic diagnostic studies enable us to identify affected relatives at high risk for rapid diagnosis and treatment of the disorder. Objectives: This study aimed to investigate genetic variations in the TSHβ gene for the first time in Iranian patients with CCH. Methods: Seven children affected by congenital TSH-deficient hypothyroidism were investigated for mutations in TSHβ. Variable TSH levels in these patients ranged from low values for diagnosis to significant values, so central hypothyroidism was assumed due to mutations in the TSHβ gene. Results: We identified two novel heterozygous (F11Y and G106R) and one homozygous (T14A) missense mutations in the coding sequence of exons 2 and 3. One of the new heterozygous mutations (F11Y) and a homozygous (T14A) missense mutation were found in exon 2 of the TSHß-subunit gene. The novel mutation G106R in exon 3 was found in three pediatric patients with congenital hypothyroidism. c.40A>G (T14A, rs10776792) appears to be the most common genetic variation associated with TSH deficiency. The others were c.32T>A in exon 2 and c.316G>C in exon 3, which resulted in a change from phenylalanine to tyrosine (p.F11Y) and glycine to arginine (G106R), respectively. Conclusions: The identification of these mutations for the first time in Iranian patients suggests that CCH is more common than previously recognized, and the TSHβ gene may be the mutational hot spot.


1996 ◽  
Vol 98 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Dirk Schindelhauer ◽  
Michael Weiss ◽  
Heide Hellebrand ◽  
Astrid Golla ◽  
Martin Hergersberg ◽  
...  

2016 ◽  
Vol 101 (3) ◽  
pp. 1016-1022 ◽  
Author(s):  
S. Latteyer ◽  
L. Klein-Hitpass ◽  
C. Khandanpour ◽  
D. Zwanziger ◽  
T. D. Poeppel ◽  
...  

Abstract Context: Multiple endocrine neoplasia type 2 (MEN2) is usually caused by missense mutations in the proto-oncogene, RET. Objective: This study aimed to determine the mutation underlying MEN2A in a female patient diagnosed with bilateral pheochromocytoma at age 31 years and with medullary thyroid carcinoma (MTC) 6 years later. Methods: Leukocyte DNA was used for exome and Sanger sequencing. Wild-type (WT) RET and mutants were expressed in HEK293 cells. Activation of MAPK/ERK and PI3K/AKT was analyzed by Western blotting and luciferase assay. The effect of RET mutants on cell proliferation was tested in a colony forming assay. Results: Exome sequencing revealed a 6-nucleotide/2-amino acid in-frame deletion in exon 7 of RET (c.1512_1517delGGAGGG, p.505_506del). In vitro expression showed that phosphorylation of the crucial tyrosine 905 was much stronger in the p.505_506del RET mutant compared with WT RET, indicating ligand-independent autophosphorylation. Furthermore, the p.505_506del RET mutant induced a strong activation of the MAPK/ERK pathway and the PI3K/AKT pathway. Consequently, the p.505_506del RET mutant cells increased HEK293 colony formation 4-fold compared with WT RET. Conclusion: The finding of bilateral pheochromocytoma and MTC in our patient was highly suspicious of a RET mutation. Exome sequencing revealed a 6-base-pair deletion in exon 7 of RET, an exon not yet associated with MEN2. Increased ligand-independent phosphorylation of the p.505_506del RET mutant, increased activation of downstream pathways, and stimulation of cell proliferation demonstrated the pathogenic nature of the mutation. We therefore recommend screening the whole sequence of RET in MTC and pheochromocytoma patients with red flags for a genetic cause.


Blood ◽  
2004 ◽  
Vol 103 (2) ◽  
pp. 456-464 ◽  
Author(s):  
Kohsuke Imai ◽  
Tomohiro Morio ◽  
Yi Zhu ◽  
Yinzhu Jin ◽  
Sukeyuki Itoh ◽  
...  

Abstract Mutations of the Wiskott-Aldrich syndrome protein (WASP) gene result either in the classic Wiskott-Aldrich syndrome (WAS) or in a less severe form, X-linked thrombocytopenia (XLT). A phenotype-genotype correlation has been reported by some but not by other investigators. In this study, we characterized WASP gene mutations in 50 Japanese patients and analyzed the clinical phenotype and course of each. All patients with missense mutations were WASP-positive. In contrast, patients with nonsense mutations, large deletions, small deletions, and small insertions were WASP-negative. Patients with splice anomalies were either WASP-positive or WASP-negative. The clinical phenotype of each patient was correlated with the presence or absence of WASP. Lack of WASP expression was associated with susceptibility to bacterial, viral, fungal, and Pneumocystis carinii infections and with severe eczema, intestinal hemorrhage, death from intracranial bleeding, and malignancies. Rates for overall survival and survival without intracranial hemorrhage or other serious complications were significantly lower in WASP-negative patients. This analysis provides evidence for a strong phenotype-genotype correlation and demonstrates that WAS protein expression is a useful tool for predicting long-term prognosis for patients with WAS/XLT. Based on data presented here, hematopoietic stem cell transplantation should be considered, especially for WASP-negative patients, while the patients are young to improve prognosis.


Genetika ◽  
2008 ◽  
Vol 40 (1) ◽  
pp. 51-65
Author(s):  
Adriane Menssen ◽  
Peter Peterson

Two En/Spm-transposable element alleles of the A1 locus in maize (Zea mays) are described. One of the alleles is al-m (papu), (PETERSON, 1961). The distinctive phenotype of this allele is characterized with pale and purple sectoring amidst large areas of no sectoring. The other allele, al-m (Au), appears full colored but is heavily mutating and expresses large colorless areas. These two alleles differ in the frequency of derivative products [al-m( papu)-colorless and pale exceptions vs al- m(Au)-mostly colorless exceptions]. A molecular description is provided in an attempt to explain these differences in phenotypes and derivative products. A nine-base-pair deficiency in Exon 2 of the A1 locus of the a1- m (papu) allele originated following the origin of this allele and this deficiency is likely responsible for the differential phenotypes. The possible origin of this nine-base-pair deletion is discussed. .


Sign in / Sign up

Export Citation Format

Share Document