Changes in in vivo fluorescence quenching in rye and barley as a function of reduced PSII light harvesting antenna size

1994 ◽  
Vol 91 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Stefan Falk ◽  
Marianna Krol ◽  
Denis P. Maxwell ◽  
David A. Rezansoff ◽  
Gordon R. Gray ◽  
...  
1994 ◽  
Vol 91 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Stefan Falk ◽  
Marianna Krol ◽  
Denis P. Maxwell ◽  
David A. Rezansoff ◽  
Gordon R. Gray ◽  
...  

Author(s):  
Jahan M. Dawlaty ◽  
Akihito Ishizaki ◽  
Arijit K. De ◽  
Graham R. Fleming

We briefly review the coherent quantum beats observed in recent two-dimensional electronic spectroscopy experiments in a photosynthetic-light-harvesting antenna. We emphasize that the decay of the quantum beats in these experiments is limited by ensemble averaging. The in vivo dynamics of energy transport depends upon the local fluctuations of a single photosynthetic complex during the energy transfer time (a few picoseconds). Recent analyses suggest that it remains possible that the quantum-coherent motion may be robust under individual realizations of the environment-induced fluctuations contrary to intuition obtained from condensed phase spectroscopic measurements and reduced density matrices. This result indicates that the decay of the observed quantum coherence can be understood as ensemble dephasing. We propose a fluorescence-detected single-molecule experiment with phase-locked excitation pulses to investigate the coherent dynamics at the level of a single molecule without hindrance by ensemble averaging. We discuss the advantages and limitations of this method. We report our initial results on bulk fluorescence-detected coherent spectroscopy of the Fenna–Mathews–Olson complex.


2017 ◽  
Vol 1858 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Jooyeon Jeong ◽  
Kwangryul Baek ◽  
Henning Kirst ◽  
Anastasios Melis ◽  
EonSeon Jin

2019 ◽  
Author(s):  
W. H. J. Wood ◽  
M. P. Johnson

AbstractThe light-dependent reactions of photosynthesis take place in the plant chloroplast thylakoid membrane, a complex three-dimensional structure divided into the stacked grana and unstacked stromal lamellae domains. Plants regulate the macro-organization of photosynthetic complexes within the thylakoid membrane to adapt to changing environmental conditions and avoid oxidative stress. One such mechanism is the state transition which regulates photosynthetic light harvesting and electron transfer. State transitions are driven by changes in the phosphorylation of light harvesting antenna complex II (LHCII), which cause a decrease in grana diameter and stacking, a decreased energetic connectivity between photosystem II (PSII) reaction centres and an increase in the relative LHCII antenna size of photosystem I (PSI) compared to PSII. Phosphorylation is believed to drive these changes by weakening the intra-membrane lateral PSII-LHCII and LHCII-LHCII interactions and the inter-membrane stacking interactions between these complexes, while simultaneously increasing the affinity of LHCII for PSI. We investigated the relative roles and contributions of these three types of interaction to state transitions using a lattice-based model of the thylakoid membrane based on existing structural data, developing a novel algorithm to simulate protein complex dynamics. Monte Carlo simulations revealed that state transitions are unlikely to lead to a large-scale migration of LHCII from the grana to the stromal lamellae. Instead, the increased light harvesting capacity of PSI is largely due to the more efficient recruitment of LHCII already residing in the stromal lamellae into PSI-LHCII supercomplexes upon its phosphorylation. Likewise, the increased light harvesting capacity of PSII upon dephosphorylation was found to be driven by a more efficient recruitment of LHCII already residing in the grana into functional PSII-LHCII clusters, primarily driven by lateral interactions.Statement of significanceFor photosynthesis to operate at maximum efficiency the activity of the light-driven chlorophyll-protein complexes, photosystems I and II (PSI and PSII) must be fine-tuned to environmental conditions. Plants achieve this balance through a regulatory mechanism known as the state transition, which modulates the relative light-harvesting antenna size and therefore excitation rate of each photosystem. State transitions are driven by changes in the extent of the phosphorylation of light harvesting complex II (LHCII), which modulate the interactions between PSI, PSII and LHCII. Here we developed a novel algorithm to simulate protein complex dynamics and then ran Monte Carlo simulations to understand how these interactions cooperate to affect the organization of the photosynthetic membrane and bring about state transitions.


2009 ◽  
Vol 107 (5) ◽  
pp. 2337-2342 ◽  
Author(s):  
Masakazu Iwai ◽  
Makio Yokono ◽  
Noriko Inada ◽  
Jun Minagawa

Plants and green algae maintain efficient photosynthesis under changing light environments by adjusting their light-harvesting capacity. It has been suggested that energy redistribution is brought about by shuttling the light-harvesting antenna complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) (state transitions), but such molecular remodeling has never been demonstrated in vivo. Here, using chlorophyll fluorescence lifetime imaging microscopy, we visualized phospho-LHCII dissociation from PSII in live cells of the green alga Chlamydomonas reinhardtii. Induction of energy redistribution in wild-type cells led to an increase in, and spreading of, a 250-ps lifetime chlorophyll fluorescence component, which was not observed in the stt7 mutant incapable of state transitions. The 250-ps component was also the dominant component in a mutant containing the light-harvesting antenna complexes but no photosystems. The appearance of the 250-ps component was accompanied by activation of LHCII phosphorylation, supporting the visualization of phospho-LHCII dissociation. Possible implications of the unbound phospho-LHCII on energy dissipation are discussed.


2018 ◽  
Author(s):  
Yury B. Slonimskiy ◽  
Eugene G. Maksimov ◽  
Evgeny P. Lukashev ◽  
Marcus Moldenhauer ◽  
Cy M. Jeffries ◽  
...  

AbstractPhotosynthesis requires a balance between efficient light harvesting and protection against photodamage. The cyanobacterial photoprotection system uniquely relies on the functioning of the photoactive orange carotenoid protein (OCP) that under intense illumination provides fluorescence quenching of the light-harvesting antenna complexes, phycobilisomes. The recently identified fluorescence recovery protein (FRP) binds to the photoactivated OCP and accelerates its relaxation into the basal form, completing the regulatory circle. The molecular mechanism of FRP functioning is largely controversial. Moreover, since the available knowledge has mainly been gained from studying Synechocystis proteins, the cross-species conservation of the FRP mechanism remains unexplored. Besides phylogenetic analysis, we performed a detailed structural-functional analysis of two selected low-homology FRPs by comparing them with Synechocystis FRP (SynFRP). While adopting similar dimeric conformations in solution and preserving binding preferences of SynFRP toward various OCP variants, the low-homology FRPs demonstrated distinct binding stoichiometries and differentially accentuated features of this functional interaction. By providing clues to understand the FRP mechanism universally, our results also establish foundations for upcoming structural investigations necessary to elucidate the FRP-dependent regulatory mechanism.


1987 ◽  
Vol 42 (6) ◽  
pp. 794-797 ◽  
Author(s):  
Jack J. S. van Rensen ◽  
Leon E. E M. Spätjens

The heterogeneity of photosystem II with respect to α and β centers was investigated in triazine-resistant and susceptible biotypes of Chenopodium album . In both biotypes the light harvesting antenna sizes of photosystem II α centers was larger than those of β centers. In the resistant biotype the antenna size of the α centers was smaller than those in the susceptible one. There was not much difference in the antenna sizes of the β centers. The proportion of β centers was larger in the resistant biotype compared with the sensitive one.


Sign in / Sign up

Export Citation Format

Share Document