scholarly journals Modelling the role of LHCII-LHCII, PSII-LHCII and PSI-LHCII interactions in state transitions

2019 ◽  
Author(s):  
W. H. J. Wood ◽  
M. P. Johnson

AbstractThe light-dependent reactions of photosynthesis take place in the plant chloroplast thylakoid membrane, a complex three-dimensional structure divided into the stacked grana and unstacked stromal lamellae domains. Plants regulate the macro-organization of photosynthetic complexes within the thylakoid membrane to adapt to changing environmental conditions and avoid oxidative stress. One such mechanism is the state transition which regulates photosynthetic light harvesting and electron transfer. State transitions are driven by changes in the phosphorylation of light harvesting antenna complex II (LHCII), which cause a decrease in grana diameter and stacking, a decreased energetic connectivity between photosystem II (PSII) reaction centres and an increase in the relative LHCII antenna size of photosystem I (PSI) compared to PSII. Phosphorylation is believed to drive these changes by weakening the intra-membrane lateral PSII-LHCII and LHCII-LHCII interactions and the inter-membrane stacking interactions between these complexes, while simultaneously increasing the affinity of LHCII for PSI. We investigated the relative roles and contributions of these three types of interaction to state transitions using a lattice-based model of the thylakoid membrane based on existing structural data, developing a novel algorithm to simulate protein complex dynamics. Monte Carlo simulations revealed that state transitions are unlikely to lead to a large-scale migration of LHCII from the grana to the stromal lamellae. Instead, the increased light harvesting capacity of PSI is largely due to the more efficient recruitment of LHCII already residing in the stromal lamellae into PSI-LHCII supercomplexes upon its phosphorylation. Likewise, the increased light harvesting capacity of PSII upon dephosphorylation was found to be driven by a more efficient recruitment of LHCII already residing in the grana into functional PSII-LHCII clusters, primarily driven by lateral interactions.Statement of significanceFor photosynthesis to operate at maximum efficiency the activity of the light-driven chlorophyll-protein complexes, photosystems I and II (PSI and PSII) must be fine-tuned to environmental conditions. Plants achieve this balance through a regulatory mechanism known as the state transition, which modulates the relative light-harvesting antenna size and therefore excitation rate of each photosystem. State transitions are driven by changes in the extent of the phosphorylation of light harvesting complex II (LHCII), which modulate the interactions between PSI, PSII and LHCII. Here we developed a novel algorithm to simulate protein complex dynamics and then ran Monte Carlo simulations to understand how these interactions cooperate to affect the organization of the photosynthetic membrane and bring about state transitions.

1995 ◽  
Vol 50 (1-2) ◽  
pp. 77-85
Author(s):  
Manoj K. Joshi ◽  
Prasanna Mohanty ◽  
Salil Bose

Abstract Thylakoids isolated from SAN 9785 (4-chloro-5-dimethylamino-2-phenyl-3(2H)-pyridazi-none)-treated pea plants showed an inhibition of “state transition” and the light-harvesting complex II (LHC II) phosphorylation-mediated changes in the energy distribution between photosystem II (PS II) and photosystem I (PS I) as measured by a decrease in PS II and an increase in PS I fluorescence yield. Interestingly, in these thylakoids the extent of phosphorylation-induced migration of light-harvesting complex (LHC II-P) to non-appressed mem­brane regions was only marginally inhibited. We propose that the suppression in the ability for “state transition” by SANDOZ 9785 (SAN 9785) treatment occurs due to a lack of effec­tive coupling of the migrated LHC II-P and PS I. Since we observed a decrease in the antenna size of PS I of the treated plants, the lack of effective coupling is attributed to this decrease in the antenna size of PS I.


2017 ◽  
Vol 1858 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Jooyeon Jeong ◽  
Kwangryul Baek ◽  
Henning Kirst ◽  
Anastasios Melis ◽  
EonSeon Jin

1994 ◽  
Vol 91 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Stefan Falk ◽  
Marianna Krol ◽  
Denis P. Maxwell ◽  
David A. Rezansoff ◽  
Gordon R. Gray ◽  
...  

2009 ◽  
Vol 107 (5) ◽  
pp. 2337-2342 ◽  
Author(s):  
Masakazu Iwai ◽  
Makio Yokono ◽  
Noriko Inada ◽  
Jun Minagawa

Plants and green algae maintain efficient photosynthesis under changing light environments by adjusting their light-harvesting capacity. It has been suggested that energy redistribution is brought about by shuttling the light-harvesting antenna complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) (state transitions), but such molecular remodeling has never been demonstrated in vivo. Here, using chlorophyll fluorescence lifetime imaging microscopy, we visualized phospho-LHCII dissociation from PSII in live cells of the green alga Chlamydomonas reinhardtii. Induction of energy redistribution in wild-type cells led to an increase in, and spreading of, a 250-ps lifetime chlorophyll fluorescence component, which was not observed in the stt7 mutant incapable of state transitions. The 250-ps component was also the dominant component in a mutant containing the light-harvesting antenna complexes but no photosystems. The appearance of the 250-ps component was accompanied by activation of LHCII phosphorylation, supporting the visualization of phospho-LHCII dissociation. Possible implications of the unbound phospho-LHCII on energy dissipation are discussed.


1994 ◽  
Vol 91 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Stefan Falk ◽  
Marianna Krol ◽  
Denis P. Maxwell ◽  
David A. Rezansoff ◽  
Gordon R. Gray ◽  
...  

2022 ◽  
Author(s):  
Collin Steen ◽  
Adrien Burlacot ◽  
Audrey Short ◽  
Krishna K. Niyogi ◽  
Graham Fleming

Photosynthetic organisms use sunlight as the primary energy source to fix CO2. However, in the environment, light energy fluctuates rapidly and often exceeds saturating levels for periods ranging from seconds to hours, which can lead to detrimental effects for cells. Safe dissipation of excess light energy occurs primarily by non-photochemical quenching (NPQ) processes. In the model green microalga Chlamydomonas reinhardtii, photoprotective NPQ is mostly mediated by pH-sensing light-harvesting complex stress-related (LHCSR) proteins and the redistribution of light-harvesting antenna proteins between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to the dynamic functioning of NPQ under fluctuating light conditions remains unknown. Here, by monitoring NPQ throughout multiple high light-dark cycles with fluctuation periods ranging from 1 to 10 minutes, we show that the dynamics of NPQ depend on the frequency of light fluctuations. Mutants impaired in the accumulation of LHCSRs (npq4, lhcsr1, and npq4lhcsr1) showed significantly less quenching during illumination, demonstrating that LHCSR proteins are responsible for the majority of NPQ during repetitive exposure to high light fluctuations. Activation of NPQ was also observed during the dark phases of light fluctuations, and this was exacerbated in mutants lacking LHCSRs. By analyzing 77K chlorophyll fluorescence spectra and chlorophyll fluorescence lifetimes and yields in a mutant impaired in state transition, we show that this phenomenon arises from state transition. Finally, we quantified the contributions of LHCSRs and state transition to the overall NPQ amplitude and dynamics for all light periods tested and compared those with cell growth under various periods of fluctuating light. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.


Sign in / Sign up

Export Citation Format

Share Document