Membrane lipid composition and restoration of photosynthesis during low temperature acclimation in Synechococcus sp. strain PCC 7942

1998 ◽  
Vol 104 (3) ◽  
pp. 405-412 ◽  
Author(s):  
J. Porankiewicz ◽  
E. Selstam ◽  
D. Campbell ◽  
G. Öquist
mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Anne-Catherine Ahn ◽  
Evelien Jongepier ◽  
J. Merijn Schuurmans ◽  
W. Irene C. Rijpstra ◽  
Jaap S. Sinninghe Damsté ◽  
...  

ABSTRACT The genus Thioalkalivibrio comprises sulfur-oxidizing bacteria thriving in soda lakes at high pH and salinity. Depending on the geographical location and the season, these lakes can strongly vary in temperature. To obtain a comprehensive understanding of the molecular and physiological adaptations to low temperature, we compared the responses of two Thioalkalivibrio strains to low (10°C) and high (30°C) temperatures. For this, the strains were grown under controlled conditions in chemostats and analyzed for their gene expression (RNA sequencing [RNA-Seq]), membrane lipid composition, and glycine betaine content. The strain Thioalkalivibrio versutus AL2T originated from a soda lake in southeast Siberia that is exposed to strong seasonal temperature differences, including freezing winters, whereas Thioalkalivibrio nitratis ALJ2 was isolated from an East African Rift Valley soda lake with a constant warm temperature the year round. The strain AL2T grew faster than ALJ2 at 10°C, likely due to its 3-fold-higher concentration of the osmolyte glycine betaine. Moreover, significant changes in the membrane lipid composition were observed for both strains, leading to an increase in their unsaturated fatty acid content via the Fab pathway to avoid membrane stiffness. Genes for the transcriptional and translational machinery, as well as for counteracting cold-induced hampering of nucleotides and proteins, were upregulated. Oxidative stress was reduced by induction of vitamin B12 biosynthesis genes, and growth at 10°C provoked downregulation of genes involved in the second half of the sulfur oxidation pathway. Genes for intracellular signal transduction were differentially expressed, and interestingly, AL2T upregulated flagellin expression, whereas ALJ2 downregulated it. IMPORTANCE In addition to their haloalkaline conditions, soda lakes can also harbor a variety of other extreme parameters, to which their microbial communities need to adapt. However, for most of these supplementary stressors, it is not well known yet how haloalkaliphiles adapt and resist. Here, we studied the strategy for adaptation to low temperature in the haloalkaliphilic genus Thioalkalivibrio by using two strains isolated from soda lakes with different temperature regimes. Even though the strains showed a strong difference in growth rate at 10°C, they exhibited similar molecular and physiological adaptation responses. We hypothesize that they take advantage of resistance mechanisms against other stressors commonly found in soda lakes, which are therefore maintained in the bacteria living in the absence of low-temperature pressure. A major difference, however, was detected for their glycine betaine content at 10°C, highlighting the power of this osmolyte to also act as a key compound in cryoprotection.


1988 ◽  
Vol 254 (6) ◽  
pp. R870-R876 ◽  
Author(s):  
N. L. Pruitt

The membrane lipid composition of hepatopancreas tissue was analyzed from two phylogenetically related species of crayfish after thermal acclimation to either 5 or 20 degrees C. One species overwinters in a quiescent state (Orconectes propinquus) and the other remains active throughout the winter (Cambarus bartoni). Both species significantly decreased the level of saturates in the major phosphatides, phosphatidylcholine (PC) and phosphatidylethanolamine (PE; difference not significant in C. bartoni), and both winter-active and winter-quiescent animals tended to be enriched in n-3 acids in PC. Orconectes animals tended to be enriched in n - 3 acids in PC. Orconectes accumulated n - 6 acids in PE at low temperature, whereas Cambarus lost n - 6 acids in this lipid, a change that was offset by the accumulation of monoenes. Cardiolipin became more saturated with cold acclimation in both species. The fatty acid content of the triacylglycerol fraction showed little change with acclimation history, although O. propinquus did accumulate n - 3 acids in triglycerides at low temperature. In O. propinquus, head-group composition was not significantly altered by temperature, but in C. bartoni, cold temperature increased the relative amounts of PE, sphingomyelin, and phosphatidylinositol at the expense of PC. Adaptations to temperature in membrane composition of poikilotherms are related to the overwintering strategy of the animal.


Sign in / Sign up

Export Citation Format

Share Document