soda lakes
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 52)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Thierry A. Pellegrinetti ◽  
Simone R. Cotta ◽  
Hugo Sarmento ◽  
Juliana S. Costa ◽  
Endrews Delbaje ◽  
...  

Abstract Soda lakes environment is known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effect of different environmental conditions of six adjacent soda lakes on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes in three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, that was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were linked to high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and less stressed lake conditions. Stress response metabolism was overrepresented in ET and OT lakes and underrepresented in CVO lakes. Altogether, this study illustrated the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.


2022 ◽  
Vol 962 (1) ◽  
pp. 012026
Author(s):  
P V Matafonov

Abstract Meromictic soda lakes are considered models of reservoirs of the Early Proterozoic. Lake Doroninskoe belongs to a rare type of moderately salty alkaline soda lake with a carbonate type of salinity and pronounced meromixia. Studies and publications on the zoobenthos of the lake are rare. In 2005–2007, studies of zoobenthos and zooplankton of the lake were carried out. Meromixia of the water column caused the stable presence of zooplankton only in a layer up to 4 m. The distribution of the taxonomic abundance, quantitative development and structure of zoobenthos in the lake corresponds to the stratification of the water column into mixolimnion, chemocline and monimolimnion. Bottom biotopes and water column layers deeper than 4 m were uninhabited, which is probably due to the lack of oxygen and high hydrogen sulphide content in the bottom water layers due to meromixia. A similar distribution of zooplankton in Lake Doroninskoe and its mesocosm model was revealed.


2021 ◽  
Author(s):  
Xiangyuan Li ◽  
Maohua Yang ◽  
Tingzhen Mu ◽  
Delu Miao ◽  
Jinlong Liu ◽  
...  

Abstract Bacteria are important participants in sulfur cycle of the extremely haloalkaline environment, e.g. soda lakes. The effects of physicochemical factors on the composition of sulfide-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in soda lakes have remained elusive. Here, we surveyed the communities structure of total bacteria, SOB and SRB based on 16S rRNA, soxB and dsrB gene sequencing, respectively, in five soda lakes with different physicochemical factors. The results showed that the dominant bacteria in soda lakes sediments belonged to the phyla Proteobacteria, Bacteroidetes, Halanaerobiaeota, Firmicutes and Actinobacteria. SOB and SRB were widely distributed in lakes with different physicochemical characteristics,and the community composition were different . In general, salinity and inorganic nitrogen sources (NH4+-N, NO3--N) were the most significant factors. Specifically, the communities of SOB, mainly including Thioalkalivibrio, Burkholderia, Paracoccus, Bradyrhizobium, and Hydrogenophaga genera, were remarkably influenced by the levels of NH4+-N and salinity. Yet, for SRB communities, including Desulfurivibrio, Candidatus Electrothrix, Desulfonatronospira, Desulfonatronum, Desulfonatronovibrio, Desulfonatronobacter and so on, the most significant determinants were salinity and NO3--N. Besides, Rhodoplanes played a significant role in the interaction between SOB and SRB. From our results, the knowledge regarding the community structures of SOB and SRB in extremely haloalkaline environment was extended.


3 Biotech ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohamed Ibrahim Abo-Alkasem ◽  
Dina A. Maany ◽  
Mostafa A. El-Abd ◽  
Abdelnasser S. S. Ibrahim

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3411
Author(s):  
Agnieszka E. Misztak ◽  
Malgorzata Waleron ◽  
Magda Furmaniak ◽  
Michal M. Waleron ◽  
Olga Bazhenova ◽  
...  

Cyanobacteria from the genus Arthrospira/Limnospira are considered haloalkalotolerant organisms with optimal growth temperatures around 35 °C. They are most abundant in soda lakes in tropical and subtropical regions. Here, we report the comprehensive genome-based characterisation and physiological investigation of the new strain O9.13F that was isolated in a temperate climate zone from the winter freezing Solenoye Lake in Western Siberia. Based on genomic analyses, the Siberian strain belongs to the Arthrospira/Limnospira genus. The described strain O9.13F showed the highest relative growth index upon cultivation at 20 °C, lower than the temperature 35 °C reported as optimal for the Arthrospira/Limnospira strains. We assessed the composition of fatty acids, proteins and photosynthetic pigments in the biomass of strain O9.13F grown at different temperatures, showing its potential suitability for cultivation in a temperate climate zone. We observed a decrease of gamma-linolenic acid favouring palmitic acid in the case of strain O9.13F compared to tropical strains. Comparative genomics showed no unique genes had been found for the Siberian strain related to its tolerance to low temperatures. In addition, this strain does not possess a different set of genes associated with the salinity stress response from those typically found in tropical strains. We confirmed the absence of plasmids and functional prophage sequences. The genome consists of a 4.94 Mbp with a GC% of 44.47% and 5355 encoded proteins. The Arthrospira/Limnospira strain O9.13F presented in this work is the first representative of a new clade III based on the 16S rRNA gene, for which a genomic sequence is available in public databases (PKGD00000000).


2021 ◽  
Vol 908 (1) ◽  
pp. 012025
Author(s):  
B B Bazarova ◽  
A P Kuklin ◽  
S V Borzenko

Abstract The cyclical nature of long-term changes in the annual amounts of atmospheric precipitation in Transbaikalia controls most of the processes in ecosystems. The paper briefly describes the long-term vegetation dynamics of soda lakes in the southeast of Transbaikal territory. These dynamics are driven by changes in abiotic parameters of the lakes, mainly water salinity and pH values. When the values of these indicators increase, the perennial succession series of vegetation of higher plants is as following: Helophytes + Neustophytes + Hydatophytes → Helophytes + Hydatophytes → Helophytes. The succession series of macrophytic algae is as following: Stigeoclonium sp. or Spirogyra sp. → Cladophora fracta + Charophyta → Enteromorpha intestinalis.


2021 ◽  
Author(s):  
Romano Mwirichia

Abstract BackgroundMicroorganisms have been able colonize and thrive in environments characterized by low/high pH, temperature, salt or pressure. Examples of extreme environments are the soda lakes and soda deserts. The objective of this study was to explore the fungal diversity across soda lakes Magadi, Elmenteita, Sonachi and Bogoria in Kenya. A new set of primers was designed to amplify a fragment long enough for the 454-pyrosequencing technology. Results Analysis of the amplicons generated showed that the new primers amplified for eukaryotic groups. A total of 153,634 quality-filtered, non-chimeric sequences were used for community diversity analysis. The sequence reads were clustered into 502 operational taxonomic Units (OTUs) at 97% similarity using BLASTn analysis of which 432 were affiliated to known fungal phylotypes and the rest to other eukaryotes. Fungal OTUs were distributed across 107 genera affiliated to the phylum Ascomycota, Basidiomycota, Glomeromycotina and Incertae Sedis. The Phylum Ascomycota was the most abundant phylotype. Overall, fifteen (15) genera (Chaetomium, Monodictys, Arthrinium, Cladosporium, Fusarium, Myrothecium, Phyllosticta, Coniochaeta, Diatrype, Sarocladium, Sclerotinia, Aspergillus, Preussia and Eutypa) accounted for 65.3% of all the reads. The Genus Cladosporium was detected across all the samples at varying percentages with the highest being water from Lake Bogoria (51.4%). Good’s coverage estimator values ranged between 97 and 100%, an indication that the dominant phylotypes were represented in the data. ConclusionThese results provide useful insights that can guide cultivation dependent studies in order to understand the physiology and biochemistry of the as yet uncultured taxa.


2021 ◽  
Vol 11 (4) ◽  
pp. 426-433
Author(s):  
N. A. Tashlykova ◽  
E. Yu. Afonina
Keyword(s):  

Chemosphere ◽  
2021 ◽  
pp. 132592
Author(s):  
Lucas Pellegrini Elias ◽  
Amauri Antonio Menegário ◽  
Amauris Hechevarria Hernandez ◽  
Carlos Eduardo Eismann ◽  
José Lucas Martins Viana ◽  
...  

2021 ◽  
Vol 38 (3) ◽  
pp. 375-382
Author(s):  
Pınar Çağlayan

As an extreme environment, soda lakes harbor various haloalkaliphilic microorganisms. Salda Lake is one of the natural soda lake (pH˃9) in Turkey. Haloalkaliphiles are unique microorganisms in their ability to live in high alkaline and high saline conditions, and play an important role in biodegradation and bioremediation of hydrocarbons. Hence, the aims of this study were to isolate haloalkaliphilic bacteria from water sample of Salda Lake, to identify these isolates by both conventional and molecular methods, to screen their industrially important enzymes, and to investigate their antimicrobial resistance profiles. Six isolates were identified as Bacillus horneckiae, Bacillus subtilis, Bacillus paramycoides, Bacillus pumilus, Staphylococcus epidermidis, Bacillus haynesii according to 16S rRNA gene sequencing analysis. The industrially important enzymes (amylase, cellulase, pullulanase, lipase, urease, protease, caseinase, oxidase, catalase) were produced by haloalkaliphilic isolates. These enzymes maybe used in alkaline and saline industrial processes. Although Bacillus subtilis was susceptible to all antibiotics, other isolates showed resistance to at least one antibiotic. The resistance against antibiotics were found as ampicillin/sulbactam 83%, amoxycillin/clavulanic acid 83%, ampicillin 67%, mupirocin 67%, chloramphenicol 50%, tetracycline 50%, imipenem 50%, meropenem 50%, cefadroxil 17%. These bacteria may have develope resistance to antibiotics that entering their natural environment in different ways.


Sign in / Sign up

Export Citation Format

Share Document