Taste response to mixtures: Analytic processing of quality.

2003 ◽  
Vol 117 (2) ◽  
pp. 228-235 ◽  
Author(s):  
Marion E. Frank ◽  
Bradley K. Formaker ◽  
Thomas P. Hettinger
Author(s):  
Michael Shreeves ◽  
Leo Gugerty ◽  
DeWayne Moore

Abstract Background Research on causal reasoning often uses group-level data analyses that downplay individual differences and simple reasoning problems that are unrepresentative of everyday reasoning. In three empirical studies, we used an individual differences approach to investigate the cognitive processes people used in fault diagnosis, which is a complex diagnostic reasoning task. After first showing how high-level fault diagnosis strategies can be composed of simpler causal inferences, we discussed how two of these strategies—elimination and inference to the best explanation (IBE)—allow normative performance, which minimizes the number of diagnostic tests, whereas backtracking strategies are less efficient. We then investigated whether the use of normative strategies was infrequent and associated with greater fluid intelligence and positive thinking dispositions and whether normative strategies used slow, analytic processing while non-normative strategies used fast, heuristic processing. Results Across three studies and 279 participants, uses of elimination and IBE were infrequent, and most participants used inefficient backtracking strategies. Fluid intelligence positively predicted elimination and IBE use but not backtracking use. Positive thinking dispositions predicted avoidance of backtracking. After classifying participants into groups that consistently used elimination, IBE, and backtracking, we found that participants who used elimination and IBE made fewer, but slower, diagnostic tests compared to backtracking users. Conclusions Participants’ fault diagnosis performance showed wide individual differences. Use of normative strategies was predicted by greater fluid intelligence and more open-minded and engaged thinking dispositions. Elimination and IBE users made the slow, efficient responses typical of analytic processing. Backtracking users made the fast, inefficient responses suggestive of heuristic processing.


2021 ◽  
Author(s):  
Du Zhang ◽  
Xiaoxiao Wang ◽  
Yanming Wang ◽  
Benedictor Alexander Nguchu ◽  
Zhoufang Jiang ◽  
...  

The topological representation is a fundamental property of human primary sensory cortices. The human gustatory cortex (GC) responds to the five basic tastes: bitter, salty, sweet, umami, and sour. However, the topological representation of the human gustatory cortex remains controversial. Through functional magnetic resonance imaging(fMRI) measurements of human responses to the five basic tastes, the current study aimed to delineate the taste representations within the GC. During the scanning, the volunteers tasted solutions of the five basic tastes, then washed their mouths with the tasteless solution. The solutions were then sucked from the volunteers' mouths, eliminating the action of swallowing. The results showed that the bilateral mid-insula activated most during the taste task, and the active areas were mainly in the precentral and central insular sulcus. However, the regions responding to the five basic tastes are substantially overlapped, and the analysis of contrasts between each taste response and the averaged response to the remaining tastes does not report any significant results. Furthermore, in the gustatory insular cortex, the multivariate pattern analysis (MVPA) was unable to distinguish the activation patterns of the basic tastes, suggesting the possibility of weakly clustered distribution of the taste-preference neural activities in the human insular cortex. In conclusion, the presented results suggest overlapping representations of the basic tastes in the human gustatory insular cortex.


Author(s):  
Irisa Berga

<p>This paper addresses unresolved issues in the acquisition, processing and use of multi-word units which account for the learner’s idiomatic, natural language. The aim of the study is to argue for an analytic instructional approach to developing the trainee teacher’s collocational and phonological competences through the medium of the native language employing a set of didactic and linguistic techniques like etymological, phonological, structural, lexical and semantic dissection of multi-word units. Research results imply that analytic processing of multi-word units relate moderately to the enhancement of the learner’s collocational and phonological competences though relations between formal instruction and the language proficiency level may be partly obscured by the probable exposure of the learner to multi-word units in informal settings.<strong></strong></p>


1989 ◽  
Vol 10 (2) ◽  
pp. 169-172 ◽  
Author(s):  
ATSUSHI NIKI ◽  
HATSUMI NIKI ◽  
TOSHIKI HASHIOKA
Keyword(s):  

2003 ◽  
pp. 1-45
Author(s):  
Maurizio Rafanelli

This chapter presents the basic notions regarding multidimensional (aggregate) databases by referring to different definitions given for them in the literature. It illustrates the important concepts of micro, macro, and metadata; presents a formal definition of the aggregation process, discussing the concepts of dimension and dimension hierarchies; describes the multidimensional aggregate data structure, distinguishing between simple, complex, and composite structure; illustrates the different types of null values; and discusses differences and similarities which exist between multidimensional aggregate data (generally called statistical data because they are used mainly by statisticians) and the On-Line-Analytic Processing (OLAP) of multidimensional data represented by different data cubes, also discussing the different (symmetric and non-symmetric) treatment of dimensions and measures required by OLAP and aggregate multidimensional databases. Finally it discusses a graph model and a tabular model for this kind of data, and gives a set of definitions regarding the OLAP terminology.


2019 ◽  
Vol 31 (2) ◽  
pp. 383-392 ◽  
Author(s):  
Liisa Hämäläinen ◽  
Johanna Mappes ◽  
Rose Thorogood ◽  
Janne K Valkonen ◽  
Kaijamari Karttunen ◽  
...  

Abstract Many prey species contain defensive chemicals that are described as tasting bitter. Bitter taste perception is, therefore, assumed to be important when predators are learning about prey defenses. However, it is not known how individuals differ in their response to bitter taste, and how this influences their foraging decisions. We conducted taste perception assays in which wild-caught great tits (Parus major) were given water with increasing concentrations of bitter-tasting chloroquine diphosphate until they showed an aversive response to bitter taste. This response threshold was found to vary considerably among individuals, ranging from chloroquine concentrations of 0.01 mmol/L to 8 mmol/L. We next investigated whether the response threshold influenced the consumption of defended prey during avoidance learning by presenting birds with novel palatable and defended prey in a random sequence until they refused to attack defended prey. We predicted that individuals with taste response thresholds at lower concentrations would consume fewer defended prey before rejecting them, but found that the response threshold had no effect on the birds’ foraging choices. Instead, willingness to consume defended prey was influenced by the birds’ body condition. This effect was age- and sex-dependent, with adult males attacking more of the defended prey when their body condition was poor, whereas body condition did not have an effect on the foraging choices of juveniles and females. Together, our results suggest that even though taste perception might be important for recognizing prey toxicity, other factors, such as predators’ energetic state, drive the decisions to consume chemically defended prey.


1989 ◽  
Vol 85-86 ◽  
pp. 105-121
Author(s):  
Cem Alptekin

L2 learners fall into two major categories in terms of their cognitive styles. The first group comprises the relatively analytical individuals, who are said to be predominantly field independent. The second group, on the other hand, embodies the relatively holistic persons, who are said to be chiefly field dependent. L2 learners are further classified in terms of their hemispheric processing styles. Some learners are left-hemisphere dominant while others are right-hemisphere dominant. The former are thought to be more efficient with analytic processing in which the left hemisphere specializes. By contrast, the latter are described as more efficient with holistic processing in which the right hemisphere specializes. After reviewing the available evidence for the associations between cognitive and hemispheric processing styles, the paper discusses the educational implications of L2 learners' differences with respect to cognitive and hemispheric dimensions.


2004 ◽  
Vol 32 ◽  
pp. 223-225
Author(s):  
S H Bottom ◽  
H Owen ◽  
R E Lawson ◽  
P A Harris ◽  
S Hall

Two choice preference testing is used in animals to determine food preference or taste response (Nicol, 1997). This relies upon selection from a theoretical mean of 0.5, if no preference is shown. The aims of this study were two fold: to measure the incidence of side preference in the horse when given the choice of two identical feeds; and to assess the influence of age on side preference.18 TB x horses were used in this study. Six horses were allocated to each of the age groups; young (2-4 years), middle (8-14 years) and old (over 16 years). All horses were housed in stables of identical design. 1.5kg DM of basal feed was offered in two containers, positioned left and right, for a ten–minute period over nine days. All spillages were collected and recorded. Intake was calculated as the (amount of feed offered – amount of feed remaining – 0.5x the Spillage).


1991 ◽  
Vol 66 (4) ◽  
pp. 1232-1248 ◽  
Author(s):  
K. Nakamura ◽  
R. Norgren

1. The activity of 117 single neurons was recorded in the rostral nucleus of the solitary tract (NST) and tested with each of four standard chemical stimuli [sucrose, NaCl, citric acid, and quinine HCl (QHCl)] and distilled water in awake, behaving rats. In 101 of these neurons, at least one sapid stimulus elicited a significant taste response. The mean spontaneous rate of the taste neurons was 4.1 +/- 5.8 (SD) spike/s. The mean response magnitudes were as follows: sucrose, 10.6 +/- 11.7; NaCl, 8.6 +/- 14.6; citric acid, 6.2 +/- 7.8; and QHCl, 2.4 +/- 6.6 spikes/s. 2. On the basis of their largest response, 42 taste neurons were classified as sucrose-best, 25 as NaCl-best, 30 as citric acid-best, and 4 as QHCl-best. The mean spontaneous rates for these categories were 4.9 +/- 6.2 for sucrose-best cells, 5.8 +/- 7.4 for NaCl-best, 1.6 +/- 2.0 for citric acid-best, and 5.8 +/- 6.0 spikes/s for QHCl-best. The spontaneous rate of the citric acid-best neurons was significantly lower than that of the other categories. 3. At the standard concentrations, 45 taste cells (44.6%) responded significantly to only one of the gustatory stimuli. Of the 30 acid-best neurons, 23 (76.7%) responded only to citric acid. For sucrose-best cells, specific sensitivity was less common (18/42, 42.9%), and for NaCl-best neurons, it was relatively uncommon (3/25, 12%). One of the 4 QHCl-best neurons was specific. In a concentration series, more than one-half of the 19 specific neurons tested responded to only one chemical at any strength. 4. The mean entropy for the excitatory responses of all gustatory neurons was 0.60. Citric acid-best cells showed the least breadth of responsiveness (0.49), sucrose-best cells were somewhat broader (0.56), but NaCl-best and QHCl-best cells were considerably less selective (0.77 and 0.79, respectively). Inhibition was observed infrequently and never reached the criterion for significance. 5. In the hierarchical cluster analysis, the four largest clusters segregated neurons primarily by best-stimulus category. The major exception to this was a group of sucrose-best neurons that also responded to NaCl and were grouped with the NaCl-best neurons. In a two-dimensional space, the specific taste neurons, those that responded to only one of the four standard sapid stimuli, remained in well-separated groups. These specific groups, however, were joined in a ring-like formation by other neurons that responded to more than one of the sapid stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document