scholarly journals Differences in dopamine and opioid receptor ratios in the nucleus accumbens relate to physical contact and undirected song in pair-bonded zebra finches.

2021 ◽  
Author(s):  
Sarah J. Alger ◽  
Sharon A. Stevenson ◽  
Ana Armenta Vega ◽  
Cynthia A. Kelm-Nelson ◽  
Charity Vilchez Juang ◽  
...  
2000 ◽  
Vol 20 (24) ◽  
pp. 9333-9340 ◽  
Author(s):  
Alexis C. Thompson ◽  
Agustin Zapata ◽  
Joseph B. Justice ◽  
Roxanne A. Vaughan ◽  
Lawrence G. Sharpe ◽  
...  

2020 ◽  
Author(s):  
Breanne E. Pirino ◽  
Mary B. Spodnick ◽  
Andrew T. Gargiulo ◽  
Genevieve R. Curtis ◽  
Jessica R. Barson ◽  
...  

ABSTRACTNeural circuit engagement within the nucleus accumbens (NAc) shell is implicated in the regulation of both negative and positive affect. Classically, the dynorphin/kappa opioid receptor (KOR) system in the NAc was believed to promote dysphoric behavior, while dopamine was viewed as interacting with reward behavior, and KOR activation was known to inhibit dopamine release. Recently, however, both the KOR and dopamine systems have, separately, been shown to have differential effects across the rostro-caudal axis of the NAc shell on hedonic responses. Whether or not this is due to interactions between KORs and dopamine, and if it extends to other affective behaviors, remains to be determined. In this study, we examined in rats the relationship between the KOR and dopamine systems in both the rostral and caudal NAc shell using ex vivo fast scan cyclic voltammetry and the impact of KOR activation on affective behavior using approach-avoidance assays. We report here that activation of KORs in the caudal NAc shell significantly inhibits dopamine release, stimulates novelty-induced rearing behavior, increases avoidance behavior, and reduces locomotor activity. In contrast, activation of KORs in the rostral NAc shell inhibits dopamine release to a lesser extent and instead increases approach behavior. Taken together, these results indicate that there is heterogeneity across the rostro-caudal axis of the NAc shell in the effects of KOR stimulation on affective behaviors, and they suggest that this might be due to differences in KOR control over dopamine release.


2013 ◽  
Vol 19 (9) ◽  
pp. 986-994 ◽  
Author(s):  
N Kabli ◽  
T Nguyen ◽  
G Balboni ◽  
B F O'Dowd ◽  
S R George

2011 ◽  
Vol 301 (1) ◽  
pp. R244-R254 ◽  
Author(s):  
Yoshihiro Katsuura ◽  
Jennifer A. Heckmann ◽  
Sharif A. Taha

Infusion of a μ-opioid receptor (MOR) agonist into the nucleus accumbens (NAcc) drives voracious food intake, an effect hypothesized to occur through increased tastant palatability. While intake of many palatable foods is elevated by MOR stimulation, this manipulation has a preferential effect on fatty food ingestion. Consumption of high-fat foods is increased by NAcc MOR stimulation even in rats that prefer a carbohydrate-rich alternative under baseline conditions. This suggests that NAcc MOR stimulation may not simply potentiate palatability signals and raises the possibility that mechanisms mediating fat intake may be distinct from those underlying intake of other tastants. The present study was conducted to investigate the physiological mechanisms underlying the effects of NAcc MOR stimulation on fatty food intake. In experiment 1, we analyzed lick microstructure in rats ingesting Intralipid to identify the changes underlying feeding induced by infusion of a MOR-specific agonist into the NAcc. MOR stimulation in the NAcc core, but not shell, increased burst duration and first-minute licks, while simultaneously increasing the rate and duration of Intralipid ingestion. These results suggest that MOR activation in the core increases Intralipid palatability and attenuates inhibitory postingestive feedback. In experiment 2, we measured the effects of MOR stimulation in the NAcc core on consumption of nonnutritive olestra. A MOR-specific agonist dose dependently increased olestra intake, demonstrating that caloric signaling is not required for hyperphagia induced by NAcc MOR stimulation. Feeding induced by drug infusion in both experiments 1 and 2 was blocked by a MOR antagonist. In experiment 3, we determined whether MOR activation in the NAcc core could attenuate satiety-related signaling caused by infusion of the melanocortin agonist MTII into the third ventricle. Suppression of intake caused by MTII was reversed by MOR stimulation. Together, our results suggest that MOR stimulation in the NAcc core elevates fatty food intake through palatability mechanisms dependent on orosensory cues and suppression of satiety signals inhibiting food intake.


Sign in / Sign up

Export Citation Format

Share Document