Disorders highlight differences in learning, memory functions

1983 ◽  
Author(s):  
Carol Turkington ◽  
Keyword(s):  
2007 ◽  
Author(s):  
Celine Fouquet ◽  
Kinga Igloi ◽  
Alain Berthoz ◽  
Laure Rondi-Reig

1982 ◽  
Vol 11 (4) ◽  
pp. 261-268
Author(s):  
J. Rönnberg ◽  
G. öhngren ◽  
L.-G. Nilsson
Keyword(s):  

2020 ◽  
Vol 54 (6) ◽  
pp. 73-79
Author(s):  
F. Kawano ◽  
◽  
T. Ohira ◽  
K. Goto ◽  
Y. Ohira ◽  
...  

The roles of gravitational load or anti-gravitational muscular activities on the growth and development of motor function and/or anti-gravity muscle, soleus, had been investigated. In this review, the responses of growth-associated changes in swimming [1, 2] and/or surface righting performance [3], spatial learning and memory functions [4], and hippocampal neurogenesis [5] or protein expression [6] to hindlimb unloading (HU) by hindlimb suspension or spaceflight during neonatal growing period in rats were discussed. Effects on the morphological and contractile properties, distribution of neuromuscular junction in single muscle fibers, sampled from tendon-to-tendon, and roles of satellite cells and myonuclei in the regulation of these properties [7–9] were also reviewed.


Author(s):  
Lemont Kier

: This review focuses on the two-century old concept of proton hopping. Introduced in 1806 by Grottus, it has evolved into an explanation of great diversity in describing many functions in living systems. It is a process involving water, which expands on the belief that life exists only in the presence of water. This review describes the mechanism of the process as it carries information through water. A focus is initially made on the process in water in the nerve systems. The nature of the process in these systems is described as the passage of proton hopping in living systems. In drug-receptor encounters, proton hopping is initiated, carrying specific information from these specialized encounters. The review continues with an explanation of sleep, arising from an alteration in proton hopping. A similar phenomenon of the effect of general anesthetic agents is described, as they interfere with by proton hopping. Finally, memory functions are addressed in the realm of events carried by proton hopping.


2020 ◽  
Vol 10 (4) ◽  
pp. 355-363
Author(s):  
Mohaddese Mahboubi ◽  
Leila Mohammad Taghizadeh Kashani

Background: In Iranian Traditional Medicine, Boswellia serrata oleo-gum resins were used for the treatment of "Nisyan". "Nisyan" was equivalent to a reduction of memory or forgetfulness. Objective: This review evaluates the traditional believes of B. serrata and memory and its effectiveness on memory loss. Methods: We extracted all traditional and modern information on B. serrata oleo-gum resin preparations and memory from scientific accessible resources (Google Scholar, PubMed, Springer, Science direct, Wiley), non-accessible resources and traditional books. Results: In traditional manuscripts, "Nisyan" is equal to memory loss in modern medicine and was believed to happen as the result of pouring the waste materials into the brain. Traditional practitioners treated "Nisyan" by inhibition of waste production in the brain or cleaning the brain from waste materials. They recommended using the plants with warming effects on the brain. It was believed that B. serrata had beneficial effects on memory functions and its memory enhancing effects have been the subject of pharmacological and clinical trial studies. Conclusion: Despite some documents on the effectiveness of B. serrata oleo-gum-resin on memory functions, there is gap between these investigations, especially in pregnant and nursing mothers. More investigations with large clinical trials are required to complete flaw in order to improve the therapeutic applications of B. serrata on memory functions.


2021 ◽  
pp. 1-10
Author(s):  
Karem H. Alzoubi ◽  
Rahaf M. Batran ◽  
Nour A. Al-Sawalha ◽  
Omar F. Khabour ◽  
Nareg Karaoghlanian ◽  
...  

2021 ◽  
pp. 174702182110105
Author(s):  
Spencer Talbot ◽  
Todor Gerdjikov ◽  
Carlo De Lillo

Assessing variations in cognitive function between humans and animals is vital for understanding the idiosyncrasies of human cognition and for refining animal models of human brain function and disease. We determined memory functions deployed by mice and humans to support foraging with a search task acting as a test battery. Mice searched for food from the top of poles within an open-arena. Poles were divided into groups based on visual cues and baited according to different schedules. White and black poles were baited in alternate trials. Striped poles were never baited. The requirement of the task was to find all baits in each trial. Mice’s foraging efficiency, defined as the number of poles visited before all baits were retrieved, improved with practice. Mice learnt to avoid visiting un-baited poles across trials (Long-term memory) and revisits to poles within each trial (Working memory). Humans tested with a virtual-reality version of the task outperformed mice in foraging efficiency, working memory and exploitation of the temporal pattern of rewards across trials. Moreover, humans, but not mice, reduced the number of possible movement sequences used to search the set of poles. For these measures interspecies differences were maintained throughout three weeks of testing. By contrast, long-term-memory for never-rewarded poles was similar in mice and humans after the first week of testing. These results indicate that human cognitive functions relying upon archaic brain structures may be adequately modelled in mice. Conversely, modelling in mice fluid skills likely to have developed specifically in primates, requires caution.


2000 ◽  
Vol 23 (6) ◽  
pp. 995-996 ◽  
Author(s):  
Antti Revonsuo

The approach of Hobson et al. is limited to the description of global states of consciousness, although more detailed analyses of the specific contents of consciousness would also be required. Furthermore, their account of the mind-brain relationship remains obscure. Nielsen's discussion suffers from conceptual and definitional unclarity. Mentation during sleep could be clarified by reconceptualizing it as an issue about the contents of consciousness. Vertes & Eastman do not consider the types of memory (emotional) and learning (implicit) that are relevant during REM sleep, and therefore dismiss on inadequate grounds the possibility of memory functions associated with REM sleep.[Hobson et al.; Nielsen; Vertes & Eastman]


Sign in / Sign up

Export Citation Format

Share Document