PsycTESTS: "Operation Test Derby"

2010 ◽  
Keyword(s):  
1987 ◽  
Author(s):  
M. SAKIYAMA ◽  
A. IWATA ◽  
M. YOSHIWA ◽  
R. YOSHIDA ◽  
Y. KAGAYA

2002 ◽  
Vol 12 (1) ◽  
pp. 496-499 ◽  
Author(s):  
T. Ando ◽  
T. Isono ◽  
T. Kato ◽  
N. Koizumi ◽  
K. Okuno ◽  
...  

Author(s):  
Shinichi Kajita ◽  
Yasutaroh Tanaka ◽  
Junichi Kitajima

As a final step of the Catalytic Combustor Development Program, a catalytic combustor developed was tested in a 150-kW gas turbine-generator unit. A digital control system was developed to improve its controllability for a transient operation, and a 200-hr continuous operation test was performed to asses the durability of the catalyst. During the test, an excellent performance of the control system was verified, and a very high combustion efficiency of more than 99% and a ultra-low NOx level of less than 5.6 ppm (at 15% O2) were achieved at a 150-kW generator output. In addition, the combustion efficiency has been maintained at over 98% for 200 hours of operation. However, the catalyst exposed to 200 hours of operation showed signs of deactivation.


Author(s):  
Zhusan Luo ◽  
Carl L. Schwarz ◽  
Fabio Martins ◽  
Anthony Rosati

Abstract This paper presents an experimental study of high cyclic synchronous vibration observed on the top pinion of an integrally geared centrifugal compressor. This cyclic synchronous vibration was different from the previously reported Morton effect. In a typical cycle, the vibration began with a long quiet period, then took off and followed by settle-down. Sometimes, vibration peaked above a shutdown limit, which subsequently tripped the compressor and then the air separation plant. Frequency spectra showed this new cyclic vibration was dominated by synchronous vibration. To obtain reliable and meaningful phase information for the diagnosis, a new signal processing technique was developed to analyze the historic vibration data captured without a key phasor. An experimental study of this new rotordynamic phenomenon was conducted on the machine in operation. Test data showed the high cyclic synchronous vibration was closely related to Morton effect though it does not have a significant phase shift. An effective remedy measure was therefore taken, and the cyclic synchronous vibration was eliminated. Since then, this compressor has been running smoothly for 17 months. A possible mechanism of the cyclic vibration is discussed in this paper.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4253 ◽  
Author(s):  
Efrén Díez-Jiménez ◽  
Alberto Vidal-Sánchez ◽  
Alberto Barragán-García ◽  
Miguel Fernández-Muñoz ◽  
Ricardo Mallol-Poyato

A prototype for mechanizing the asphalt roofing process was developed. In this manuscript, we present the design, manufacturing, preliminary thermal test, and operation test of the equipment. The innovation is sustained by the use of infrared radiators instead of fuel burners. Infrared heaters provide optimal clean heat transfer to asphalt rolls in comparison to fuel burner automated systems since the latter generates a significant amount of CO2, SO2, and other non-ecofriendly emissions close to workers. Moreover, the equipment has several advantages with respect to manual installation, such as roofing capacity, cleanness, safety, uniformity, and environment-friendliness. It demonstrates an installation speed of 1 m/min, on average, for 3 kg/m2 rolls, which leads to around 400–420 m2 per person a day, more than the usual manual roofing rate. However, there are some issues that need to be resolved, such as inaccurate unrolling and/or bad adhesion gaps.


Author(s):  
Tadahiro Washiya ◽  
Toshimitsu Tayama ◽  
Kazuhito Nakamura ◽  
Kimihiko Yano ◽  
Atsuhiro Shibata ◽  
...  

Uranium crystallization based on solubility difference is one of the remarkable technologies which can provide simple process to separate uranium in nitric acid solution since the process is mainly controlled by temperature and concentration of solute ions. Japan Atomic Energy Agency (JAEA) and Mitsubishi Materials Corporation (MMC) are developing the crystallization process for elemental technology of FBR fuel reprocessing.[1–3] The uranium (U) crystallization process is a key technology for New Extraction System for TRU Recovery (NEXT) process that was evaluated as the most promising process for future FBR reprocessing.[4–6] We had developed an innovative crystallizer and carried out several fundamental investigations. On the basis of the results, we fabricated an engineering-scale crystallizer and have carried out continuous operation test to investigate the stability of the equipment at steady and non-steady state conditions by using depleted uranium. As for simulating typical failure events in the crystallizer, crystal accumulation and crystal blockage were occurred intentionally, and monitoring method and resume procedure were tried and selected in this work. As the test results, no significant phenomenon was observed in the steady state test. And in the non-steady state test, process fluctuation could be detected by monitoring of screw torque and liquid level in the crystallizer, and all failure events are proven to be recovered by appropriate resumed procedures.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Panida Thararak ◽  
Peerapol Jirapong

The flexible operation of microgrids, along with the availability of distributed generation (DG) units, causes a variety of changes in short-circuit current levels, magnitudes, and directions, which has undesirable effects on the operation of protection systems. Conventional protection schemes use typical directional overcurrent relays (DOCRs) with limited operating capability, unable to respond to microgrid operations in the manner of short-circuit current changes. In this paper, a quaternary protection scheme implemented with dual-directional overcurrent relays (dual-DOCR) and a protection control strategy is developed for protecting against faults in microgrids, taking into account the existence of DGs and connection and disconnection of DG units. The optimal dual-DOCRs setting and coordination are formulated as an optimization problem solved by evolutionary programming to minimize the relay operating times. The proposed protection scheme is implemented with a centralized protection control system based on the smart grid concept to increase the adaptability of the dual-DOCRs, which have multiple relay setting groups in accordance with system state changes. The simulation case studies are performed using the IEEE 14-bus test system, which is modified as a meshed microgrid operation. Test scenarios, including possible operations of microgrids, DGs availabilities, and different fault events, are analyzed and discussed. The comparative studies and simulation results show that the proposed scheme provides efficient coordination between the primary and backup relays and increases the responsibility of the protection system, which can be observed from the significant reduction in the relay operating times, resulting in the enhancement of selectivity, sensitivity, and speed of microgrid protection systems.


Sign in / Sign up

Export Citation Format

Share Document