Experimental Study of Cyclic Synchronous Vibration of an Integrally Geared Centrifugal Compressor for Air Separation Application

Author(s):  
Zhusan Luo ◽  
Carl L. Schwarz ◽  
Fabio Martins ◽  
Anthony Rosati

Abstract This paper presents an experimental study of high cyclic synchronous vibration observed on the top pinion of an integrally geared centrifugal compressor. This cyclic synchronous vibration was different from the previously reported Morton effect. In a typical cycle, the vibration began with a long quiet period, then took off and followed by settle-down. Sometimes, vibration peaked above a shutdown limit, which subsequently tripped the compressor and then the air separation plant. Frequency spectra showed this new cyclic vibration was dominated by synchronous vibration. To obtain reliable and meaningful phase information for the diagnosis, a new signal processing technique was developed to analyze the historic vibration data captured without a key phasor. An experimental study of this new rotordynamic phenomenon was conducted on the machine in operation. Test data showed the high cyclic synchronous vibration was closely related to Morton effect though it does not have a significant phase shift. An effective remedy measure was therefore taken, and the cyclic synchronous vibration was eliminated. Since then, this compressor has been running smoothly for 17 months. A possible mechanism of the cyclic vibration is discussed in this paper.

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1062 ◽  
Author(s):  
Venkata ◽  
Rao

A control valve plays a very significant role in the stable and efficient working of a control loop for any process. In a fluid flow process, the probability of failure of a control valve may increase for many reasons pertaining to a flow process such as high pressures at the inlet, different properties of the liquid flowing through the pipe, mechanical issue related to a control valve, ageing, etc. A method to detect faults in the valve can lead to better stability of the control loop. In the proposed work, a technique is developed to determine the fault in a pneumatic control valve by analyzing the vibration data at the outlet of the valve. The fault diagnosis of the valve is carried out by analyzing the change in vibration of the pipe due to the change in flow pattern induced by the control valve. The faults being considered are inflow and insufficient supply pressure faults. Vibration data obtained is processed using a signal processing technique like amplification, Fourier transform, etc. The support vector machine (SVM) algorithm is used to classify the vibration data into two classes, one normal and the other faulty. The designed algorithm is trained to identify faults and subjected to test with a practical setup; test results show an accuracy of 97%.


Author(s):  
Sagi Rathna Prasad ◽  
A. S. Sekhar

Abstract Rotating machinery components like shafts subjected to continuous fluctuating loads are prone to fatigue cracks. Fatigue cracks are severe threat to the integrity of rotating machinery. Therefore it is indispensable for early diagnostics of fatigue cracks in shaft to avoid catastrophic failures. From the literature, it is evident that the spectral kurtosis (SK) and fast kurtogram were used to detect the faults in bearings and gears. The present study illustrates the use of SK and fast kurtogram for early fatigue crack detection in the shaft using vibration data. To perform this study, experiments are conducted on a rotor test rig which is designed and developed according to the function specification proposed by ASTM E468-11 standard. Fatigue crack is developed, on three shaft specimens, each seeded with the same circumferential V-Notch configuration, by continuous application of stochastic loads on the shaft using electrodynamic shaker in addition to the unbalance forces that arise in normal operating conditions. Vibration data is acquired from various locations of the rotor, using different sensors like miniature accelerometers, laser vibrometer and wireless telemetry strain gauge, till the shaft specimen develops fatigue crack. The analysis results show that the combination of SK and fast kurtogram is an effective signal processing technique for detecting the fatigue crack in the shaft.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2448
Author(s):  
Hongbin Lu ◽  
Chuantao Zheng ◽  
Lei Zhang ◽  
Zhiwei Liu ◽  
Fang Song ◽  
...  

The development of an efficient, portable, real-time, and high-precision ammonia (NH3) remote sensor system is of great significance for environmental protection and citizens’ health. We developed a NH3 remote sensor system based on tunable diode laser absorption spectroscopy (TDLAS) technique to measure the NH3 leakage. In order to eliminate the interference of water vapor on NH3 detection, the wavelength-locked wavelength modulation spectroscopy technique was adopted to stabilize the output wavelength of the laser at 6612.7 cm−1, which significantly increased the sampling frequency of the sensor system. To solve the problem in that the light intensity received by the detector keeps changing, the 2f/1f signal processing technique was adopted. The practical application results proved that the 2f/1f signal processing technique had a satisfactory suppression effect on the signal fluctuation caused by distance changing. Using Allan deviation analysis, we determined the stability and limit of detection (LoD). The system could reach a LoD of 16.6 ppm·m at an average time of 2.8 s, and a LoD of 0.5 ppm·m at an optimum averaging time of 778.4 s. Finally, the measurement result of simulated ammonia leakage verified that the ammonia remote sensor system could meet the need for ammonia leakage detection in the industrial production process.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3725
Author(s):  
Paweł Zimroz ◽  
Paweł Trybała ◽  
Adam Wróblewski ◽  
Mateusz Góralczyk ◽  
Jarosław Szrek ◽  
...  

The possibility of the application of an unmanned aerial vehicle (UAV) in search and rescue activities in a deep underground mine has been investigated. In the presented case study, a UAV is searching for a lost or injured human who is able to call for help but is not able to move or use any communication device. A UAV capturing acoustic data while flying through underground corridors is used. The acoustic signal is very noisy since during the flight the UAV contributes high-energetic emission. The main goal of the paper is to present an automatic signal processing procedure for detection of a specific sound (supposed to contain voice activity) in presence of heavy, time-varying noise from UAV. The proposed acoustic signal processing technique is based on time-frequency representation and Euclidean distance measurement between reference spectrum (UAV noise only) and captured data. As both the UAV and “injured” person were equipped with synchronized microphones during the experiment, validation has been performed. Two experiments carried out in lab conditions, as well as one in an underground mine, provided very satisfactory results.


2021 ◽  
pp. 174702182110371
Author(s):  
Scott Beveridge ◽  
Estefanía Cano ◽  
Steffen A. Herff

Equalisation, a signal processing technique commonly used to shape the sound of music, is defined as the adjustment of the energy in specific frequency components of a signal. In this work we investigate the effects of equalisation on preference and sensorimotor synchronisation in music. Twenty-one participants engaged in a goal-directed upper body movement in synchrony with stimuli equalised in three low-frequency sub-bands (0 - 50 Hz, 50 - 100 Hz, 100 - 200 Hz). To quantify the effect of equalisation, music features including spectral flux, pulse clarity, and beat confidence were extracted from seven differently equalised versions of music tracks - one original and six manipulated versions for each music track. These music tracks were then used in a movement synchronisation task. Bayesian mixed effects models revealed different synchronisation behaviours in response to the three sub-bands considered. Boosting energy in the 100 - 200 Hz sub-band reduced synchronisation performance irrespective of the sub-band energy of the original version. An energy boost in the 0 - 50 Hz band resulted in increased synchronisation performance only when the sub-band energy of the original version was high. An energy boost in the 50 - 100 Hz band increased synchronisation performance only when the sub-band energy of the original version was low. Boosting the energy in any of the three subbands increased preference regardless of the energy of the original version. Our results provide empirical support for the importance of low-frequency information for sensorimotor synchronisation and suggest that the effect of equalisation on preference and synchronisation are largely independent of one another.


Sign in / Sign up

Export Citation Format

Share Document