Cascade models of the development of speed, memory, and fluid reasoning in children

2011 ◽  
Author(s):  
Duneesha de Alwis ◽  
Sandra Hale ◽  
Joel Myerson
2016 ◽  
Vol 32 (4) ◽  
pp. 298-306 ◽  
Author(s):  
Samuel Greiff ◽  
Katarina Krkovic ◽  
Jarkko Hautamäki

Abstract. In this study, we explored the network of relations between fluid reasoning, working memory, and the two dimensions of complex problem solving, rule knowledge and rule application. In doing so, we replicated the recent study by Bühner, Kröner, and Ziegler (2008) and the structural relations investigated therein [ Bühner, Kröner, & Ziegler, (2008) . Working memory, visual-spatial intelligence and their relationship to problem-solving. Intelligence, 36, 672–680]. However, in the present study, we used different assessment instruments by employing assessments of figural, numerical, and verbal fluid reasoning, an assessment of numerical working memory, and a complex problem solving assessment using the MicroDYN approach. In a sample of N = 2,029 Finnish sixth-grade students of which 328 students took the numerical working memory assessment, the findings diverged substantially from the results reported by Bühner et al. Importantly, in the present study, fluid reasoning was the main source of variation for rule knowledge and rule application, and working memory contributed only a little added value. Albeit generally in line with previously conducted research on the relation between complex problem solving and other cognitive abilities, these findings directly contrast the results of Bühner et al. (2008) who reported that only working memory was a source of variation in complex problem solving, whereas fluid reasoning was not. Explanations for the different patterns of results are sought, and implications for the use of assessment instruments and for research on interindividual differences in complex problem solving are discussed.


2009 ◽  
Author(s):  
Eric G. Freedman ◽  
Michael D. McManaman ◽  
Nezar Khatib

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
André Kretzschmar ◽  
Stephan Nebe

In order to investigate the nature of complex problem solving (CPS) within the nomological network of cognitive abilities, few studies have simultantiously considered working memory and intelligence, and results are inconsistent. The Brunswik symmetry principle was recently discussed as a possible explanation for the inconsistent findings because the operationalizations differed greatly between the studies. Following this assumption, 16 different combinations of operationalizations of working memory and fluid reasoning were examined in the present study (N = 152). Based on structural equation modeling with single-indicator latent variables (i.e., corrected for measurement error), it was found that working memory incrementally explained CPS variance above and beyond fluid reasoning in only 2 of 16 conditions. However, according to the Brunswik symmetry principle, both conditions can be interpreted as an asymmetrical (unfair) comparison, in which working memory was artificially favored over fluid reasoning. We conclude that there is little evidence that working memory plays a unique role in solving complex problems independent of fluid reasoning. Furthermore, the impact of the Brunswik symmetry principle was clearly demonstrated as the explained variance in CPS varied between 4 and 31%, depending on which operationalizations of working memory and fluid reasoning were considered. We argue that future studies investigating the interplay of cognitive abilities will benefit if the Brunswik principle is taken into account.


2021 ◽  
Vol 45 (2) ◽  
Author(s):  
Andrea Stocco ◽  
Chantel S. Prat ◽  
Lauren K. Graham

2021 ◽  
pp. 49-59
Author(s):  
S. P. Seleznev ◽  
O. B. Tamrazova ◽  
V. Yu. Sergeev ◽  
V. G. Nikitaev ◽  
A. N. Pronichev

This review article provides an overview of the etiology, pathogenesis, clinical presentation, diagnosis, and treatment methods for actinic keratosis, keratoacanthoma, and Bowen’s disease. The provoking factors are described, where the main importance is attached to insolation, previous immunosuppression and immunodeficiency and trauma. The pathogenesis of these diseases is described in the form of cascade models. Various clinical forms and their main dermatoscopic features, suitable for digital processing in automated diagnostic systems, are presented. A stepwise approach to the treatment of these nosologies is described, and a preliminary prognosis is assessed based on the duration of progression and the likelihood of transformation into squamous cell carcinoma. Given the fact that dermato-oncologists have not yet come to a consensus on the classification of the described diseases, in this article they are considered as a borderline, thereby demonstrating a fine line of transition from a precancerous state to cancer in situ.


Author(s):  
Sara M. Lippa ◽  
Rael T. Lange
Keyword(s):  

2017 ◽  
Vol 81 (4) ◽  
pp. 443-445
Author(s):  
T. A. Dzhatdoev ◽  
A. P. Kircheva ◽  
A. A. Lyukshin ◽  
E. V. Khalikov
Keyword(s):  

2018 ◽  
Vol 80 (6) ◽  
Author(s):  
Siti Mariam Saad ◽  
Abdul Aziz Jemain ◽  
Noriszura Ismail

This study evaluates the utility and suitability of a simple discrete multiplicative random cascade model for temporal rainfall disaggregation. Two of a simple random cascade model, namely log-Poisson and log-Normal  models are applied to simulate hourly rainfall from daily rainfall at seven rain gauge stations in Peninsular Malaysia. The cascade models are evaluated based on the capability to simulate data that preserve three important properties of observed rainfall: rainfall variability, intermittency and extreme events. The results show that both cascade models are able to simulate reasonably well the commonly used statistical measures for rainfall variability (e.g. mean and standard deviation) of hourly rainfall. With respect to rainfall intermittency, even though both models are underestimated, the observed dry proportion, log-Normal  model is likely to simulate number of dry spells better than log-Poisson model. In terms of rainfall extremes, it is demonstrated that log-Poisson and log-Normal  models gave a satisfactory performance for most of the studied stations herein, except for Dungun and Kuala Krai stations, which both located in the east part of Peninsula.


Sign in / Sign up

Export Citation Format

Share Document