Invariant Features Detected with Computer Vision Allow Better Human Object Recognition in Photographs

2007 ◽  
Author(s):  
Trevor Wolff ◽  
Jeremiah D. Still ◽  
Derrick J. Parkhurst ◽  
Veronica J. Dark
1989 ◽  
Vol 12 (3) ◽  
pp. 381-397 ◽  
Author(s):  
Gary W. Strong ◽  
Bruce A. Whitehead

AbstractPurely parallel neural networks can model object recognition in brief displays – the same conditions under which illusory conjunctions (the incorrect combination of features into perceived objects in a stimulus array) have been demonstrated empirically (Treisman 1986; Treisman & Gelade 1980). Correcting errors of illusory conjunction is the “tag-assignment” problem for a purely parallel processor: the problem of assigning a spatial tag to nonspatial features, feature combinations, and objects. This problem must be solved to model human object recognition over a longer time scale. Our model simulates both the parallel processes that may underlie illusory conjunctions and the serial processes that may solve the tag-assignment problem in normal perception. One component of the model extracts pooled features and another provides attentional tags that correct illusory conjunctions. Our approach addresses two questions: (i) How can objects be identified from simultaneously attended features in a parallel, distributed representation? (ii) How can the spatial selectional requirements of such an attentional process be met by a separation of pathways for spatial and nonspatial processing? Our analysis of these questions yields a neurally plausible simulation of tag assignment based on synchronizing feature processing activity in a spatial focus of attention.


Fast track article for IS&T International Symposium on Electronic Imaging 2021: Intelligent Robotics and Industrial Applications using Computer Vision 2021 proceedings.


Author(s):  
Abd El Rahman Shabayek ◽  
Olivier Morel ◽  
David Fofi

For long time, it was thought that the sensing of polarization by animals is invariably related to their behavior, such as navigation and orientation. Recently, it was found that polarization can be part of a high-level visual perception, permitting a wide area of vision applications. Polarization vision can be used for most tasks of color vision including object recognition, contrast enhancement, camouflage breaking, and signal detection and discrimination. The polarization based visual behavior found in the animal kingdom is briefly covered. Then, the authors go in depth with the bio-inspired applications based on polarization in computer vision and robotics. The aim is to have a comprehensive survey highlighting the key principles of polarization based techniques and how they are biologically inspired.


Author(s):  
Mohini Gawande

The increasing popularity of Social Networks makes change the way people interact. These interactions produce a huge amount of data and it opens the door to new strategies and marketing analysis. According to Instagram and Tumblr, an average of 80 and 59 million photos respectively are published every day, and those pictures contain several implicit or explicit brand logos. Image recognition is one of the most important fields of image processing and computer vision. The CNNs are a very effective class of neural networks that is highly effective at the task of image classifying, object detection and other computer vision problems.in recent years, several scale- invariant features have been proposed in literature, this paper analyzes the usage of Speeded Up Robust Features (SURF) as local descriptors, and as we will see, they are not only scale-invariant features, but they also offer the advantage of being computed very efficiently. Furthermore, a fundamental matrix estimation method based on the RANSAC is applied.


2013 ◽  
pp. 896-926
Author(s):  
Mehrtash Harandi ◽  
Javid Taheri ◽  
Brian C. Lovell

Recognizing objects based on their appearance (visual recognition) is one of the most significant abilities of many living creatures. In this study, recent advances in the area of automated object recognition are reviewed; the authors specifically look into several learning frameworks to discuss how they can be utilized in solving object recognition paradigms. This includes reinforcement learning, a biologically-inspired machine learning technique to solve sequential decision problems and transductive learning, and a framework where the learner observes query data and potentially exploits its structure for classification. The authors also discuss local and global appearance models for object recognition, as well as how similarities between objects can be learnt and evaluated.


Author(s):  
Debi Prosad Dogra

Scene understanding and object recognition heavily depend on the success of visual attention guided salient region detection in images and videos. Therefore, summarizing computer vision techniques that take the help of visual attention models to accomplish video object recognition and tracking, can be helpful to the researchers of computer vision community. In this chapter, it is aimed to present a philosophical overview of the possible applications of visual attention models in the context of object recognition and tracking. At the beginning of this chapter, a brief introduction to various visual saliency models suitable for object recognition is presented, that is followed by discussions on possible applications of attention models on video object tracking. The chapter also provides a commentary on the existing techniques available on this domain and discusses some of their possible extensions. It is believed that, prospective readers will benefit since the chapter comprehensively guides a reader to understand the pros and cons of this particular topic.


Author(s):  
Yuexing Han ◽  
Bing Wang ◽  
Hideki Koike ◽  
Masanori Idesawa

One of the main goals of image understanding and computer vision applications is to recognize an object from various images. Object recognition has been deeply developed for the last three decades, and a lot of approaches have been proposed. Generally, these methods of object recognition can successfully achieve their goal by relying on a large quantity of data. However, if the observed objects are shown to diverse configurations, it is difficult to recognize them with a limited database. One has to prepare enough data to exactly recognize one object with multi-configurations, and it is hard work to collect enough data only for a single object. In this chapter, the authors will introduce an approach to recognize objects with multi-configurations using the shape space theory. Firstly, two sets of landmarks are obtained from two objects in two-dimensional images. Secondly, the landmarks represented as two points are projected into a pre-shape space. Then, a series of new intermediate data can be obtained from data models in the pre-shape space. Finally, object recognition can be achieved in the shape space with the shape space theory.


Sign in / Sign up

Export Citation Format

Share Document