Moving Forward Vice "Straight" Ahead

2010 ◽  
Author(s):  
Lorianne M. Campanella
Keyword(s):  
2013 ◽  
Vol 9 (2) ◽  
pp. 173-186 ◽  
Author(s):  
Mari Wiklund

Asperger syndrome (AS) is a form of high-functioning autism characterized by qualitative impairment in social interaction. People afflicted with AS typically have abnormal nonverbal behaviors which are often manifested by avoiding eye contact. Gaze constitutes an important interactional resource, and an AS person’s tendency to avoid eye contact may affect the fluidity of conversations and cause misunderstandings. For this reason, it is important to know the precise ways in which this avoidance is done, and in what ways it affects the interaction. The objective of this article is to describe the gaze behavior of preadolescent AS children in institutional multiparty conversations. Methodologically, the study is based on conversation analysis and a multimodal study of interaction. The findings show that three main patterns are used for avoiding eye contact: 1) fixing one’s gaze straight ahead; 2) letting one’s gaze wander around; and 3) looking at one’s own hands when speaking. The informants of this study do not look at the interlocutors at all in the beginning or the middle of their turn. However, sometimes they turn to look at the interlocutors at the end of their turn. This proves that these children are able to use gaze as a source of feedback. When listening, looking at the speaker also seems to be easier for them than looking at the listeners when speaking.


2007 ◽  
Vol 23 (4) ◽  
pp. 261-274 ◽  
Author(s):  
Adriana M. Degani ◽  
Alessander Danna-Dos-Santos ◽  
Mark L. Latash

We tested the hypothesis that a sequence of mechanical events occurs preceding a step that scales in time and magnitude as a whole in a task-specific manner, and is a reflection of a “motor program.” Young subjects made a step under three speed instructions and four tasks: stepping straight ahead, down a stair, up a stair, and over an obstacle. Larger center-of-pressure (COP) and force adjustments in the anteriorposterior direction and smaller COP and force adjustments in the mediolateral direction were seen during stepping forward and down a stair, as compared with the tasks of stepping up a stair and over an obstacle. These differences were accentuated during stepping under the simple reaction time instruction. These results speak against the hypothesis of a single motor program that would underlie postural preparation to stepping. They are more compatible with the reference configuration hypothesis of whole-body actions.


2004 ◽  
Vol 91 (4) ◽  
pp. 1524-1535 ◽  
Author(s):  
Grégoire Courtine ◽  
Marco Schieppati

We tested the hypothesis that common principles govern the production of the locomotor patterns for both straight-ahead and curved walking. Whole body movement recordings showed that continuous curved walking implies substantial, limb-specific changes in numerous gait descriptors. Principal component analysis (PCA) was used to uncover the spatiotemporal structure of coordination among lower limb segments. PCA revealed that the same kinematic law accounted for the coordination among lower limb segments during both straight-ahead and curved walking, in both the frontal and sagittal planes: turn-related changes in the complex behavior of the inner and outer limbs were captured in limb-specific adaptive tuning of coordination patterns. PCA was also performed on a data set including all elevation angles of limb segments and trunk, thus encompassing 13 degrees of freedom. The results showed that both straight-ahead and curved walking were low dimensional, given that 3 principal components accounted for more than 90% of data variance. Furthermore, the time course of the principal components was unchanged by curved walking, thereby indicating invariant coordination patterns among all body segments during straight-ahead and curved walking. Nevertheless, limb- and turn-dependent tuning of the coordination patterns encoded the adaptations of the limb kinematics to the actual direction of the walking body. Absence of vision had no significant effect on the intersegmental coordination during either straight-ahead or curved walking. Our findings indicate that kinematic laws, probably emerging from the interaction of spinal neural networks and mechanical oscillators, subserve the production of both straight-ahead and curved walking. During locomotion, the descending command tunes basic spinal networks so as to produce the changes in amplitude and phase relationships of the spinal output, sufficient to achieve the body turn.


2017 ◽  
Vol 61 (5) ◽  
pp. 512-518 ◽  
Author(s):  
A. Saj ◽  
J. Heiz ◽  
K. Barisnikov

Author(s):  
Shanti Bhushan ◽  
Pablo Carrica ◽  
Jianming Yang ◽  
Frederick Stern

Scalability studies and computations using the largest grids to date for free-surface flows are performed using message-passing interface (MPI)-based CFDShip-Iowa toolbox curvilinear (V4) and Cartesian (V6) grid solvers on Navy high-performance computing systems. Both solvers show good strong scalability up to 2048 processors, with V6 showing somewhat better performance than V4. V6 also outperforms V4 in terms of the memory requirements and central processing unit (CPU) time per time-step per grid point. The explicit solvers show better scalability than the implicit solvers, but the latter allows larger time-step sizes, resulting in a lower total CPU time. The multi-grid HYPRE solver shows better scalability than the portable, extensible toolkit for scientific computation solver. The main scalability bottleneck is identified to be the pressure Poisson solver. The memory bandwidth test suggests that further scalability improvements could be obtained by using hybrid MPI/open multi-processing (OpenMP) parallelization. V4-detached eddy simulation (DES) on a 300 M grid for the surface combatant model DTMB 5415 in the straight-ahead condition provides a plausible description of the vortical structures and mean flow patterns observed in the experiments. However, the vortex strengths are over predicted and the turbulence is not resolved. V4-DESs on up to 250 M grids for DTMB 5415 at 20° static drift angle significantly improve the forces and moment predictions compared to the coarse grid unsteady Reynolds averaged Navier–Stokes, due to the improved resolved turbulence predictions. The simulations provide detailed resolution of the free-surface and breaking pattern and vortical and turbulent structures, which will guide planned experiments. V6 simulations on up to 276 M grids for DTMB 5415 in the straight-ahead condition predict diffused vortical structures due to poor wall-layer predictions. This could be due to the limitations of the wall-function implementation for the immersed boundary method.


2000 ◽  
Vol 10 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Helen S. Cohen

The goal of this study was to determine if people use vestibular information to keep track of their positions while walking through a simple course. Subjects were normals and patients with chronic peripheral vestibulopathies – each of whom were tested once – and patients with acoustic neuromas tested pre- operatively and one and three weeks post-operatively. Subjects walked over a straight course, 7.62 m, with their eyes open and then with their eyes closed. The time needed for task performance, the forward distance subjects walked before veering, and the lateral distance subjects veered from the straight ahead were recorded. The angle of veering was then calculated. Normals were able to perform this task easily with eyes open or closed. With eyes closed pre-operative acoustic neuroma subjects walked significantly shorter distances before veering than normals but did not veer significantly more than normals or take longer than normals to perform the task. Chronic vestibulopathy subjects, by contrast, were significantly impaired compared to normals on all measures. With eyes open within a week after acoustic neuroma resection subjects could perform the task as well as normals. With eyes closed, however, post-operative subjects were impaired compared to their own pre-operative levels, but they had returned to their pre-operative levels at the second post-operative test. Ataxia was only weakly correlated to any measures and tumor size was not related to performance. These findings support the hypothesis that vestibular input is used for spatial orientation during active motion.


Perception ◽  
10.1068/p3440 ◽  
2002 ◽  
Vol 31 (11) ◽  
pp. 1323-1333 ◽  
Author(s):  
Ellen M Berends ◽  
Raymond van Ee ◽  
Casper J Erkelens

It has been well established that vertical disparity is involved in perception of the three-dimensional layout of a visual scene. The goal of this paper was to examine whether vertical disparities can alter perceived direction. We dissociated the common relationship between vertical disparity and the stimulus direction by applying a vertical magnification to the image presented to one eye. We used a staircase paradigm to measure whether perceived straight-ahead depended on the amount of vertical magnification in the stimulus. Subjects judged whether a test dot was flashed to either the left or the right side of straight-ahead. We found that perceived straight-ahead did indeed depend on the amount of vertical magnification but only after subjects adapted (for 5 min) to vertical scale (and only in five out of nine subjects). We argue that vertical disparity is a factor in the calibration of the relationship between eye-position signals and perceived direction.


2012 ◽  
Vol 12 (6) ◽  
pp. 34-34 ◽  
Author(s):  
J.-B. Durand ◽  
D. Camors ◽  
Y. Trotter ◽  
S. Celebrini

2016 ◽  
pp. 243-248 ◽  
Author(s):  
F. Delia Rossa ◽  
O. Sukharev ◽  
G. Mastinu

Sign in / Sign up

Export Citation Format

Share Document