Supplemental Material for The Partial Derivative Framework for Substantive Regression Effects

2021 ◽  
Vol 11 (7) ◽  
pp. 3010
Author(s):  
Hao Liu ◽  
Xuewei Liu

The lack of an initial condition is one of the major challenges in full-wave-equation depth extrapolation. This initial condition is the vertical partial derivative of the surface wavefield and cannot be provided by the conventional seismic acquisition system. The traditional solution is to use the wavefield value of the surface to calculate the vertical partial derivative by assuming that the surface velocity is constant. However, for seismic exploration on land, the surface velocity is often not uniform. To solve this problem, we propose a new method for calculating the vertical partial derivative from the surface wavefield without making any assumptions about the surface conditions. Based on the calculated derivative, we implemented a depth-extrapolation-based full-wave-equation migration from topography using the direct downward continuation. We tested the imaging performance of our proposed method with several experiments. The results of the Marmousi model experiment show that our proposed method is superior to the conventional reverse time migration (RTM) algorithm in terms of imaging accuracy and amplitude-preserving performance at medium and deep depths. In the Canadian Foothills model experiment, we proved that our method can still accurately image complex structures and maintain amplitude under topographic scenario.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 26
Author(s):  
Young Sik Kim

We investigate the partial derivative approach to the change of scale formula for the functon space integral and we investigate the vector calculus approach to the directional derivative on the function space and prove relationships among the Wiener integral and the Feynman integral about the directional derivative of a Fourier transform.


2014 ◽  
Vol 50 (1) ◽  
pp. 66-72 ◽  
Author(s):  
V. I. Zhegalov ◽  
O. A. Tikhonova
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Josef Schlittenlacher ◽  
Wolfgang Ellermeier

Continuous magnitude estimation and continuous cross-modality matching with line length can efficiently track the momentary loudness of time-varying sounds in behavioural experiments. These methods are known to be prone to systematic biases but may be checked for consistency using their counterpart, magnitude production. Thus, in Experiment 1, we performed such an evaluation for time-varying sounds. Twenty participants produced continuous cross-modality matches to assess the momentary loudness of fourteen songs by continuously adjusting the length of a line. In Experiment 2, the resulting temporal line length profile for each excerpt was played back like a video together with the given song and participants were asked to continuously adjust the volume to match the momentary line length. The recorded temporal line length profile, however, was manipulated for segments with durations between 7 to 12 s by eight factors between 0.5 and 2, corresponding to expected differences in adjusted level of −10, −6, −3, −1, 1, 3, 6, and 10 dB according to Stevens’s power law for loudness. The average adjustments 5 s after the onset of the change were −3.3, −2.4, −1.0, −0.2, 0.2, 1.4, 2.4, and 4.4 dB. Smaller adjustments than predicted by the power law are in line with magnitude-production results by Stevens and co-workers due to “regression effects.” Continuous cross-modality matches of line length turned out to be consistent with current loudness models, and by passing the consistency check with cross-modal productions, demonstrate that the method is suited to track the momentary loudness of time-varying sounds.


2014 ◽  
Author(s):  
Grant Sherer ◽  
Mary Bridget Kustusch ◽  
Corinne A. Manogue ◽  
David J. Roundy
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document