Effect of the Electron Beam on the Voltage Distribution of a High-Voltage Multi-Stage Electron Accelerator

Nature ◽  
1948 ◽  
Vol 161 (4093) ◽  
pp. 563-564 ◽  
Author(s):  
F. W. WATERTON
2016 ◽  
Vol 685 ◽  
pp. 667-671 ◽  
Author(s):  
Artem V. Poloskov ◽  
Ivan S. Egorov ◽  
Vitaly Ezhov ◽  
Gennadiy Remnev

Paper presents the results of experiments on multicapillary carbon-epoxy as a candidate material for a cathode of a pulsed electron accelerator. A high voltage pulse of 350 kV, 350 ns (FWHM) was applied to the cathode. The pulse repetition rate was 20 pps. The optical image of the cathode surface after 4×104 shots of electron beam was changed as well as electrical characteristics of the electron diode.


Author(s):  
George Christov ◽  
Bolivar J. Lloyd

A new high intensity grid cap has been designed for the RCA-EMU-3 electron microscope. Various parameters of the new grid cap were investigated to determine its characteristics. The increase in illumination produced provides ease of focusing on the fluorescent screen at magnifications from 1500 to 50,000 times using an accelerating voltage of 50 KV.The EMU-3 type electron gun assembly consists of a V-shaped tungsten filament for a cathode with a thin metal threaded cathode shield and an anode with a central aperture to permit the beam to course the length of the column. The cathode shield is negatively biased at a potential of several hundred volts with respect to the filament. The electron beam is formed by electrons emitted from the tip of the filament which pass through an aperture of 0.1 inch diameter in the cap and then it is accelerated by the negative high voltage through a 0.625 inch diameter aperture in the anode which is at ground potential.


2021 ◽  
pp. 109853
Author(s):  
T. Shi ◽  
D. Sun ◽  
I. Jovanovic ◽  
G. Kalinchenko ◽  
K. Krushelnick ◽  
...  

2012 ◽  
Vol 516-517 ◽  
pp. 1503-1507
Author(s):  
Gui Hua Yuan ◽  
Lin Li ◽  
Jun Li ◽  
Zhi Jian Hu ◽  
Xiao Bo Li ◽  
...  

High voltage distribution network is an important link between transmission and middle voltage distribution network. If a high voltage distribution network fault occurs, the economy and reliability of the whole city distribution system will be seriously affected. To solve this problem, a traditional reconstruction optimization model is improved and a 2-staged reconstruction optimization model is proposed based on an improved particle swarm optimization (PSO) algorithm. The first stage reconstruction only considers the economic goal and the second stage reconstruction needs consider the boundary constrains. The 2-staged method considers the economic benefit and the voltage quality simultaneously. It can achieve the multi goals: meeting actual boundary operation conditions, optimizing the combination of network losses and the number of operation switching. The fault isolation and reconfiguration of an actual distribution network system in Dezhou power grid were simulated. Simulation results validate the rationality and feasibility of the proposed method


Sign in / Sign up

Export Citation Format

Share Document